
Proving Stateful Injective Agreement
with Refinement Types

Alessandro Bruni1, Markulf Kohlweiss2, Myrto Arapinis3, Mark Ryan4,
Eike Ritter4, Flemming Nielson1, and Hanne Riis Nielson1

1 Technical University of Denmark
2 Microsoft Research

3 University of Birmingham
4 University of Edinburgh

Injective agreement properties are useful trace properties in security protocols, as they
ensure replay protection. Traditionally injective agreement is ensured with challenge-
response mechanisms—where a fresh nonce is sent to be signed along with the response
and later checked—however there are increasingly more situations where this pattern is
not applicable, hence replay protection must be handled with internal state.

Formal verification of stateful protocols is particularly challenging, as it is often a
source of imprecision and non-termination using state-of-the-art protocols verifiers [2].
Here we prove the desired property using refinement types—types with attached logic
formulas that express properties on data—directly on the protocol implementation.

As an example we showcase a real-time authentication protocol used in automotive,
where signals are transmitted in a low-bandwidth network (the CAN Bus) for reliability,
and replay protection is achieved by including counters in the message signature. In
this case, the combination of real-time, safety and cost constraints does not allow replay
protection using challenge-response.

This pattern is also present in mobile GSM networks [1] to avoid unnecessary
roundtrips during authentication, and was also proposed as an optional feature of emerg-
ing Internet protocols like QUIC [3,5] that support a zero round-trip mode. There a
so-called “strike-register” could be used to ensure freshness of short-lived nonce received
by the server until a time-stamp invalidates the nonce.

Contribution: we propose an approach to prove injective agreement using refinement
types that is applicable to the above-mentioned scenarios. We extend on previous work
on verifying weak authentication using event logs [4].

Our approach differs from previous work using refinement types and affine logic [6]
in that we use classical logic formulas on the event traces to prove the strong agreement
property. This allows us to use F*—an extension of the F# functional language with
refinement types, supported by an SMT-based type checker—to obtain a provably correct
implementation of the protocol.

1 A Protocol with Counters

We present here a simple protocol that uses state in order to avoid replay attacks. This is
a simplified version of a security protocol in automotive, where signals are sent between

control units in a car:

A → B : sign(Signal || Counter,KAB)

When A sends a signal to B, it increases a counter and signs the signal with the current
value, using the shared key KAB. Upon receiving the message, B compares the counter
with its own local copy; if the received counter is greater than B’s local counter, then the
message is accepted, otherwise it is ignored.

Here follows the code for the main protocol, with omitted type signatures:

let k = keygen sig prop

let sender s =
let c = next cnt () in
assume (Signal s c);
let t = Format.signal s c in
let m = mac k t in
send (append t m);
None

let receiver () =
let msg = recv () in (

if length msg <> signal size + macsize then Some "Wrong length"
else

let (t, m) = split msg signal size in
match Format.signal split t with
| Some (s, c) →

if not (fresh cnt c) then Some "Counter already used"
else if not (verify k t m) then Some "MAC failed"
else (∗ Signal accepted ∗)
(

assert (Signal s c);
max lemma s c !log p;
log recv s c;
update cnt c;
None

)
| None →Some "Bad tag")

Both principals sender and receiver share a session key k, which is generated once and
for all in the protocol with an attached property sig prop, which specifies the security
property, as we will see later. The sender encodes the signal into a tagged bytestring
using the function Format.signal, produces its signature, and finally sends the assembled
message. The receiver disassembles it, checking all the conditions that violate the
property. Such conditions are signaled by the use of the option return type.

The function next cnt increments and returns a counter kept by the sender, the
function fresh cnt returns true if the counter has not been observed by the receiver, and
update cnt updates the counter for the receiver to the newer version. Communication
between the two parties is done using the send and recv functions, while the cryptographic
component is handled by the MAC module.

2 Verification Approach

We break down the problem of verifying injective agreement in two steps. First we prove
weak agreement as shown, for example, in the RPC protocol [4]: a custom predicate on
the signatures ensures that whenever the receiver accepts a message, the message has
previously been produced and sent by an honest principal. Then we use the log of events
to prove strong agreement: whenever we insert an event in the log that corresponds to
the acceptance of the message by the receiver, we ensure by typing that the event does
not appear in the log.

We use refinement types to express these properties on data. Refinement types are
types of the form x : t{ϕ(x)}, where x is a variable name, t is a type, and ϕ(x) is a first
order logic formula on x. The combined use of assume and assert with the predicate
Signal s c proves weak agreement by typing: the protocol types if, whenever Signal s c

is asserted, it was previously assumed as an hypothesis. Similarly the correct typing of
log recv s c proves strong agreement, as its type requires the event Recv s c not to be in the
log. We use refinement types to attach these properties on data, and to prove invariants
on the structure of the log.

2.1 Weak Authentication

We define a logic type key prop that is used to attach a property to the key and the text.
An Entry constructor requires key prop to hold on k and t before the entry can be created.
Finally, we define a log that is used for checking our cryptographic assumption.

type key prop : key →text →Type
type pkey (p:(text →Type)) = k:key{key prop k == p}
type entry = | Entry : k:key →t:text{key prop k t}→m:tag →entry
let log m = ref []

Next we define the types for MACing: keygen attaches the property p to the new key.
Our type signatures have been adapted from [4] to fit in the state monad ST, which we
require for verifying our protocol. The function mac requires that the attached key prop

holds on k and t, while verify ensures that key prop holds if the verification succeeds.

val keygen: p:(text →Type) →pkey p
val mac: k:key →t:text{key prop k t}→ST tag

(requires (fun h →True)) (ensures (fun h x h’ →True)) (modifies (a ref log m))
val verify: k:key →t:text →tag →ST (b:bool{b =⇒ key prop k t})

(requires (fun h →True)) (ensures (fun h x h’ →True)) (modifies (no refs))

Intuitively, the MAC interface requires that a property holds before a MAC code is
created, and ensures that the same property holds if the MAC code passes verification.
The property sig prop attached to our protocol requires that the signed message is tagged
and distinct from others, and that Signal s c has been assumed, therefore the MAC is not
forged by an adversary.

logic type Signal : uint32 →uint16 →Type
logic type sig prop (msg:message) = (∃ s c. msg = Format.signal s c ∧ Signal s c)

This property is attached to the key k when it is generated, and this allows us to verify
the weak agreement condition.

2.2 Strong Authentication

As previously mentioned we ensure strong authentication by typing the log recv function:

val log recv: s: uint32 →c: uint16 →ST (unit)
(requires (fun h →List.for all (fun e → (Recv s c) <> e) (sel h log p) ∧ c > cnt max (sel h log p)))
(ensures (fun h x h’ →sel h’ log p = Recv s c :: sel h log p ∧ c = cnt max (sel h’ log p)))
(modifies (a ref log p))

Among other conditions, this type requires that whenever we log a Recv s c event, the
event is not present in the log. Typing every call of log recv, in combination with the
assume/assert mechanism, provides the desired injective correspondence: no more than
a single occurrence of a receive event can appear in the log and whenever we accept a
message, it is produced by the honest principal.

We achieve this result by proving the following lemma and invariant:

val max lemma: s:uint32 →c:uint16 → (l:list event{c > cnt max l}) →
Lemma(∀ e . List.mem e l =⇒ (Recv s c) <> e)

let invariant h = cnt max (sel h log p) = sel h receiver cnt && Heap.contains h receiver cnt
&& Heap.contains h sender cnt && Heap.contains h log p && receiver cnt <> sender cnt

Intuitively, max lemma asserts that whenever we receive a signal s that is signed with
a counter c greater than all the counters in the log, then the event Recv s c is not in the
log. The invariant ensures that a set of properties are maintained on the heap across
executions of sender and receiver. In particular, we maintain the invariant that the highest
counter in log p is equal to the current value of receiver cnt, and that the sender cnt and
receiver cnt are disjoint memory locations, hence sender and receiver do not interfere.

3 Conclusion

We showed how to prove injective agreement on a simple stateful protocol that uses
counters for replay protection. This technique is general enough to be directly applicable
to protocols that use counters and timestamps for this purpose, and we believe that it is
adaptable to similar mechanisms, such as the “strike-register” of the QUIC protocol.

References
1. Myrto Arapinis, Loretta Ilaria Mancini, Eike Ritter, and Mark Ryan. Formal analysis of UMTS

privacy. CoRR, abs/1109.2066, 2011.
2. Alessandro Bruni, Sebastian Mödersheim, Flemming Nielson, and Hanne Riis Nielson. Set-Pi:

Set Membership Pi-calculus. In CSF, 2015.
3. Marc Fischlin and Felix Günther. Multi-Stage Key Exchange and the Case of Google’s QUIC

Protocol. In CCS, 2014.
4. Cédric Fournet, Markulf Kohlweiss, and Pierre-Yves Strub. Modular code-based cryptographic

verificationp. In CCS, 2011.
5. Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How Secure and

Quick is QUIC? Provable Security and Performance Analyses. In S&P, 2015.
6. Fabienne Eigner Michele Bugliesi, Stefano Calzavara and Matteo Maffei. Affine Refinement

Types for Secure Distributed Programming. In TOPLAS, 2015.

	Proving Stateful Injective Agreement with Refinement Types

