
Formal Verification of Ephemeral Diffie-Hellman
Over COSE (EDHOC)

Alessandro Bruni, Thorvald Sahl Jørgensen,
Theis Grønbech Petersen, Carsten Schürmann ‹

IT University of Copenhagen, Copenhagen, Denmark

Abstract. Ephemeral Diffie-Hellman over COSE (EDHOC) [1] is an au-
thentication protocol that aims to replace TLS for resource constrained
Internet of Things (IoT) devices using a selection of lightweight ciphers
and formats. It is inspired by the newest Internet Draft of TLS 1.3 [2]
and includes reduced round-trip modes. Unlike TLS 1.3, EDHOC is de-
signed from scratch, and does not have to support legacy versions of
the protocol. As the protocol is neither well-known nor has been used in
practice it has not been scrutinized to the extent it should be.
The objective of this paper is to verify security properties of the proto-
col, including integrity, secrecy, and perfect forward secrecy properties.
We use ProVerif [3] to analyze these properties formally. We describe vi-
olations of specific security properties for the reduced round-trip modes.
The flaws were reported to the authors of the EDHOC protocol.

1 Introduction

Ephemeral Diffie-Hellman over COSE (EDHOC [1]) is a lightweight authen-
ticated key exchange protocol proposed by Selander et al., part of a family
of protocols for Internet of Things (IoT) devices, and intended to be used in
conjunction with OSCORE [4]. COSE refers to a proposed IETF Encryption
standard [12]. The rationale for designing EDHOC is to provide a lightweight
alternative to the TLS handshake standard that can fit in a micro-controller. For
this purpose the backwards compatibility features of TLS are an unnecessary ob-
stacle to an efficient implementation. Furthermore, a clean-slate design can help
improve performance and also security, by supporting by default Perfect Forward
Secrecy (PFS) and following the best practices of the SIGn-and-MAC (SIGMA)
family of protocols [5], offering two modes of operation: asymmetric using public
identities, and symmetric using both public identities and pre-shared keys.

With this work we provide a formal analysis of the EDHOC protocol, which
is currently an Internet Draft on track for standardisation. We analyze the draft

‹ This work was funded in part through the Danish Council for Strategic Research,
Programme Comission on Strategic Growth Technologies under grant 10-092309.
This publication was also made possible by NPRP grant NPRP 7-988-1-178 from
the Qatar National Research Fund (a member of Qatar Foundation). The statements
made herein are solely the responsibility of the authors.



version 08 of the specification [1] and uncover hidden assumptions in the use
of encrypted payloads in the protocol. In particular, it is possible for an at-
tacker to learn the content of encrypted application data during key exchange
in the asymmetric version of the protocol, and to violate perfect forward secrecy
of application data for protocol executions in both modes (symmetric and the
asymmetric) when the attacker actively interferes with the session establishment.
These findings, albeit similar to other instances of SIGMA key establishment
protocols [6], are important to prevent potential misuse of the protocol features,
and have been incorporated into later revisions of the draft.

Compared with other authentication protocols, for example TLS 1.3 [2], ED-
HOC is conceptually much simpler, because it implements only the handshake
part without certificate handling and it has to run reliably on low energy devices.
EDHOC optimizes the number of messages to be exchanged, the length of the
message, and the number of encryption, decryption and signing operations.

However, the low complexity of EDHOC should not distract from the security
objectives such a protocol must satsify. EDHOC is an authentication protocol
that is designed to be deployed on billions of IoT devices, and any security
vulnerability in the design of the protocol would be difficult to fix and give
adversaries a powerful platform to launch distributed attacks. Thus, we conduct
a rigorous and mechanized security analysis of EDHOC, develop a formal model
of the respective symmetric and asymmetric modes of EDHOC, and verify them
in the protocol verifier ProVerif [3]. Our model allows the former to feed into the
latter, i.e. keys established during the asymmetric mode can be used as long-
term keys in the symmetric mode. In our formalization, we are able to verify that
the protocol preserves authentication, identity protection, secrecy and integrity
of encrypted application data, and perfect forward secrecy of established sessions.

Related work. The formal analysis of security standards is an active area of
research. Bhargavan et al. [6] present an analysis of the TLS 1.3 draft 18, deriving
from a reference implementation both ProVerif and CryptoVerif [7] models; a
comprehensive analysis of TLS 1.3 draft 21 has been presented by Cremers at
al. [8] using the Tamarin prover [9]. These works have served as an inspiration
when analyzing the EDHOC protocol. Also, Meadows presented a formal analysis
of the Internet Key Exchange protocol [10] using the NRL protocol verifier, to
which EDHOC is related.

Structure of this paper. The paper proceeds as follows: Section 2 presents the
EDHOC protocol as of draft version 08; Section 3 presents our modeling of the
EDHOC protocol in ProVerif and our findings are presented in Section 4. Finally,
we conclude in Section 5.

2 The Protocol

EDHOC is an authenticated key exchange protocol of the SIGMA-I family. It is a
three-message exchange between an initiator (U) and a responder (V) that estab-
lishes a Diffie-Hellman shared secret between the two parties. Being a SIGMA-I



protocol, each party can check the other identity without revealing it to a passive
attacker, and the initiator identity is also protected from an active attacker.

Krawczyk presented the rationale behind the choices of SIGMA in [5], and
Canetti and Krawczyk analysed it formally in [11]; we refer the interested reader
to those papers for an extended presentation of the general scheme.

Before we dive into presenting the details of EDHOC, we first show the
SIGMA-I protocol using authenticated encryption with associated data (AEAD),
which we denote with aeada

ktmu, using key k, optional authenticated data a and
encrypting message m. We use exponentials instead of elliptic curve notation, as
this make the paper easier to read. SIGMA-I follows this three-message exchange:

U Ñ V : gx (Σ1)

V Ñ U : gy, aeadK2
tIDV , signV pg

x, gyqu (Σ2)

U Ñ V : aeadK3
tIDU , signU pg

y, gxqu (Σ3)

The initiator first generates a fresh ephemeral public key for the session
gx and sends it to the responder in message (Σ1); analogously, the responder
generates their own ephemeral public key gy. From the Diffie-Hellman shared
secret pgxqy they can then derive the two encryption keys K2 and K3.1 K2 is used
to encrypt the public identity IDV together with the signature by the responder
V of the two ephemeral keys pgx, gyq.

Upon receiving message (Σ2), the initiator can also derive K2 and K3, check
the identity of the responder, and from that produce message (Σ3) containing
the encrypted signature of pgy, gxq and their identity.

Intuitively, the two signatures of message (Σ2) and (Σ3) ensure that the
two parties U and V agree on the ephemeral keys gx and gy if they are freshly
generated at each run of the protocol. Alternatively, if the concrete protocol
reuses ephemeral keys over sessions at the expense of forward secrecy to—like
EDHOC for example—save computations, it must include two public nonces in
the signature for the agreement to hold. Furthermore, authenticated encryption
is critical to bind the knowledge of the Diffie-Hellman shared secret pgxqy to the
identities of V and U , as both K2 and K3 are derived from it; it also protects the
responder’s identity from a passive attacker, and the initiator’s from an active
one2.

2.1 EDHOC with Asymmetric Keys

Figure 1 shows the asymmetric mode of operation for EDHOC. It implements
the SIGMA-I protocol with a few added details. On top of the ephemeral Diffie-
Hellman half-keys—which we now denote as EU and EV —EDHOC adds the
following parameters to each session:

1 See also Figures 1 and 2.
2 The original SIGMA-I protocol uses a message authentication code (MAC), and then

encrypts the signature and the authentication code with a symmetric encryption
scheme for identity protection and binding: the use of authenticated encryption here
serves this combined purpose.



Knows g, U,APP1,APP3

Initiator (U)

Knows g, V,APP2

Responder (V )

Generates SU , NU , x
EU “ gx

msg1
hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

1, SU , NU , EU , ALG1, APP1

Generates SV , NV , y
EV “ gy

aad2 “ H pmsg1, data2q

K2 “ HKDF pEU
y, aad2q

msg2
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

data2
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

2, SU , SV , NV , EV ,ALG2, aead
aad2

K2
psignV pIDV , aad2,APP2qq

K2 “ HKDF pEV
x, aad2q

aad3 “ H pH pmsg1,msg2q, data3q

K3 “ HKDF pEV
x, aad3q

data3
hkkikkj

3, SV , aeadaad3

K3
psignU pIDU , aad3,APP3qq

K3 “ HKDF pEU
y, aad3q

Fig. 1. Model of the asymmetric variant of EDHOC

– the constants 1, 2, and 3 in front of each message used for tagging;
– two session identifiers SU , SV that can be reused across sessions (e.g. to

resume a previous session using a pre-shared key in the symmetric mode);
– two nonces NU , NV that must be fresh for each new session, relieving the

requirement to generate fresh Diffie-Hellman half keys each time;
– the parameter ALG1 that includes the names of all elliptic curves supported

for the Diffie-Hellman key agreement, the supported Hashed Key Deriva-
tion Functions (HKDF) and authenticated encryption algorithms; similarly,
the parameter ALG2 includes the selected elliptic curve, HKDF and AEAD
functions; we use H and aead to denote these two functions, respectively;

– authentication data for each encrypted message (aad2 and aad3);
– optionally unencrypted application data APP1 on the first message, and

encrypted application data APP2 and APP3.

All messages in EDHOC are encoded using the CBOR Object Signing and
Encryption standard (COSE) [12], which in turn uses the Compact Binary Ob-
ject Representation [13], a binary alternative to the more common JSON web



format. For the automatic security proof that we discuss in Section 3 we chose
to abstract away from COSE and leave a mechanization to future work. The
algorithm negotiation parameters aim to ensure compatibility with future ver-
sions by allowing flexibility in the choice of algorithms, however this being the
first edition of the EDHOC standard, it mandates a fixed set of algorithms that
are currently deemed secure: ECDH-SS, HKDF-256 [14], AES-CCM-64-64-128,
and EdDSA from the COSE standard.

As the EDHOC key establishment protocol is intended to be combined with
the OSCORE standard [4], it must derive a new OSCORE session key from the
Diffie-Hellman session key, which by construction is ensured to be different from
K2 and K3 by using the algorithm identifier “EDHOC OSCORE Master Secret”
when applying the HKDF function.

Finally, the EDHOC asymmetric key exchange can produce a pre-shared key
for further communication that is also ensured to be different from all other keys
by using the algorithm identifier “EDHOC PSK Chaining” when applying the
HKDF function.

2.2 EDHOC with Pre-shared Symmetric Keys

When two devices have a pre-shared key in EDHOC, either by establishing one
through the PSK Chaining mode, or by being deployed with one, they can run
the symmetric protocol, shown in Figure 2.

In the symmetric variant, the public identities of U and V are not used.
Instead, the protocol relies on the presence of a pre-shared key PSK between
U and V , identified by the value of KID . Overall, the symmetric variant runs
similarly to the asymmetric one, except for the following:

– the keys Ki, i P t2, 3u are derived from the Diffie-Hellman shared secret
pgxqy, the authentication data aadi, and the pre-shared key PSK ;

– there is no signature scheme involved to certify the identities of U and V ,
since their identities are already fixed by the identification of PSK .

Analogously to the asymmetric variant, the symmetric mode of EDHOC
should guarantee secrecy of the established session key, authentication, identity
protection, perfect forward secrecy, integrity protection of the application data
APP1, and secrecy of the application data APP2 and APP3.

However, since the pre-shared keys identify the two parties that share them,
and are in turn identified by the KID parameter, even a passive attacker can link
multiple sessions pertaining to the same two principals by observing KID . The
standard at its current revision suggests that party U and V anonymize KID to
avoid this attack, though it does not specify how the two parties should realize
such anonymization. We will see next that the guarantees for the two variants
of the protocol are in fact slightly different, not just regarding the claims of
identity protection, but also regarding the claims of perfect forward secrecy, and
integrity and secrecy protection of application data.



Knows g,PSK ,APP1,APP3

Initiator (U)

Knows g,PSK ,APP2

Responder (V )

Generates SU , NU , x
EU “ gx

msg1
hkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkj

4, SU , NU , EU , ALG1, KID , APP1

Generates SV , NV , y
EV “ gy

aad2 “ H pmsg1, data2q

K2 “ HKDF pEU
y, aad2, PSK q

msg2
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

data2
hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

5, SU , SV , NV , EV , ALG2, enc
aad2

K2
pAPP2q

K2 “ HKDF pEV
x, aad2, PSK q

aad3 “ H pH pmsg1,msg2q, data3q

K3 “ HKDF pEV
x, aad3, PSK q

data3
hkkikkj

6, SV , aead
aad3

K3
pAPP3q

K3 “ HKDF pEU
y, aad3, PSK q

Fig. 2. Model of the symmetric variant of EDHOC

2.3 Properties

The current draft describes the security guarantees in Section 8 (Security Con-
siderations) [1]. Here we summarize the security claims of the original text and
integrate them with the results that we prove in our models, which we present
Section 4.

Perfect forward secrecy. EDHOC, being part of the SIGMA-I family of protocols,
should provide secrecy of the established session keys for past sessions, even when
the long term keys are leaked. We check this for the session key derived for the
OSCORE protocol. The same does not apply to K2, as we discuss later.

Identity protection. Thanks to the use of authenticated encryption, EDHOC
protects the initiator’s identity from an active adversary, and the responder’s
identity from a passive adversary. However in symmetric variant reusing the
same key identifier KID allows a passive attacker to correlate multiple sessions.3

3 As discussed in Section 2.2, draft 08 warns against the reuse of KID , but does not
prescribe a standard mechanism to avoid such reuse.



Protection of application data. Section 8 of the EDHOC draft 08 makes the
following claims regarding the protection of application data:

Party U and V must make sure that unprotected data and metadata do
not reveal any sensitive information. This also applies for encrypted data
sent to an unauthenticated party. In particular, it applies to APP1 and
APP2 in the asymmetric case, and APP1 and KID in the symmetric
case.

And further down in the section:

Party U and V must make sure that unprotected data does not trigger
any harmful actions. In particular, this applies to APP1 in the asymmet-
ric case, and APP1 and KID in the symmetric case. Party V should be
aware that replays of EDHOC msg1 cannot be detected unless previous
nonces are stored.

Our claim is that these sentences do not reflect the actual guarantees that
EDHOC offers. In fact, disregarding the issue on KID that we already discussed,
all application data is protected in some way, though the guarantees vary be-
tween APP1, APP2 and APP3, according to how far the protocol has progressed,
according to the variant of the protocol that is being considered—being it sym-
metric or asymmetric—and finally also depending on whether we are checking
for integrity, secrecy or perfect forward secrecy.

Table 1 summarizes the guarantees of EDHOC. The columns in this table
identify the following guarantees: Secrecy denotes whether a specific piece of
application data is guaranteed to be a secret between the two parties at the time
it is sent; Secrecy (at completion) denotes whether the secrecy claim can be made
if the protocol reaches completion; PFS denotes whether the protocol maintains
secrecy of application data even in case that the long term keys are revealed;
PFS (at completion) denotes whether the secrecy of a piece of application data
is guaranteed in the case that the long term keys are revealed if the protocol
reaches completion; finally Integrity denotes whether the other party can check
the authenticity of a particular piece of application data, similarly Integrity (at
completion) refers to whether the integrity of said application data can be trusted
if the protocol completes successfully. For each case, the table shows a check mark
if the particular piece of application data has the desired property, a cross if the
property doesn’t hold, and a dash where not relevant (i.e. secrecy of unencrypted
data).

Note that the integrity of APP1 is guaranteed if the protocol completes suc-
cessfully. Furthermore, the standard does not clearly specify what “unprotected
data” actually means, referring to APP2 as unprotected data for the asymmetric
variant, even though it is encrypted, while not for the symmetric case. As we will
see, the guarantees that we get from APP2 are rather interesting: one can rely
on APP2 being secret only at protocol completion in both the symmetric and
the asymmetric case; when an active attacker interferes with the protocol run
(and thus the protocol fails to reach completion), the attacker can obtain APP2



Variant Data Secrecy (at completion) PFS (at completion) Integrity (at completion)

Asymmetric APP1 ´ ´ ´ ´ 7 3

APP2 7 3 7 3 3 3

APP3 3 3 3 3 3 3

Symmetric APP1 ´ ´ ´ ´ 7 3

APP2 3 3 7 3 3 3

APP3 3 3 3 3 3 3
Table 1. Secrecy, PFS and integrity of application data.

for the asymmetric variant, but not for the symmetric one. However if the long
term keys are leaked, there is an active attack for APP2 also in the symmetric
variant of the protocol, where the attacker interferes with the transmission of
message 1 by injecting their own ephemeral key, and then learn the content of
APP2 when the long-term pre-shared key is leaked. This can however be avoided
if the protocol reaches completion and hereby validating the authenticity of both
principals.

Understanding the subtleties of these guarantees is a rather non-trivial task.
In fact we advocate that the standard should claim that APP2 is not confidential
in both variants of the protocol, and to avoid potential implementation mistakes,
the authors have decided to move APP2 outside the encryption. On the other
hand one can rely on the integrity of both APP1 and APP2 when the protocol
reaches completion, which allows to relax the claims of EDHOC draft 08. That
data can be used to perform irreversible actions, but only at the transmission of
the third message.

3 Modeling EDHOC in Proverif

We model EDHOC in ProVerif [3], a symbolic protocol verifier supporting un-
bounded number of sessions and with support for Diffie-Hellman equational the-
ories. ProVerif’s logical foundation is the applied π-calculus [15], which we in-
troduce and explain alongside our presentation of the EDHOC models. The four
processes of Figure 4 and Figure 5 represent the Initiator and Responder roles of
the protocol, in the symmetric and asymmetric variants, respectively. We con-
sider a unified model where the asymmetric and the symmetric variants run in
parallel, with unbounded numbers of principals and instances of each principal,
that interact in any combination with each other. Furthermore, all long term
private keys and pre-shared keys are revealed after the protocol has completed.

The equational theory and adversary model. By working on the symbolic Dolev-
Yao model [16], we abstract away from concrete cryptographic primitives and
their representation. Instead, we assume that the cryptographic primitives are
“perfect”, following common practice when working with ProVerif [17].

The Dolev-Yao model puts the attacker in control of the communication chan-
nel: it can intercept all communication between the honest principals, drop and



inject messages, construct and decompose them using the known cryptographic
primitives, and generate new secrets (keys, nonces etc.). It is a powerful adver-
sary, though its capabilities end there: The Dolev-Yao attacker cannot decrypt
messages without the proper keys, invert hash functions, etc. For the purpose
of an efficient analysis, several defining features attributed to real cryptographic
constructions are simply ignored, for example the extensionality of hash func-
tions or the malleability of encryption schemes.

Let us thus define the symbols that model our cryptographic primitives, along
with their arities:

taeadEncrypt{3, aeadDecrypt{3, decrypt{2, pk{1, sign{2, verify{2
id{1,HKDF {4, empty{0, getAlgorithm{1, hash{1, g{0, exp{2u

and the equations that hold between them:

taeadDecryptpaeadEncryptpx, y, aadq, y, aadq “ x,
decryptpaeadEncryptpx, y, aadq, yq “ x,
verifypsignpx, yq, pkpyqq “ x,
getAlgorithmpHKDF px, aad, y, algIDqq “ algID ,
exppexppg , xq, yq “ exppexppg , yq, xqu

The first equation implements the symmetric authenticated encryption scheme
with associated data (aead in the protocol presentation): when a message is de-
crypted with key y the authentication data aad is also verified. The second
equation models decryption without verifying the authenticity of the message.
The third equation models a public signature scheme, where the signature of a
message x with the private key y can be checked with the corresponding public
key. The function HKDF derives a key from the Diffie-Hellman shared secret,
some authentication data, an optional symmetric key (we use the symbol empty
to denote a missing key), and the algorithm—or purpose—for which it will be
used. The function getAlgorithm is used to retrieve the algorithm identifier, and
distinguish between keys with different purposes. This is a modelling artefact
to aid termination of the tool, avoiding loops that re-insert pre-shared keys be-
tween parties that already ran the symmetric protocol (see lines 42-44 of the
listing in Figure 5). No equation is defined for the hash function hash, since it
is irreversible. Finally, the last equation models the commutative property of
Diffie-Hellman groups.

The equations that we introduced so far are useful for the sake of automated
verification: all but the last one are subterm convergent, and hence can be inter-
preted from left to right leading to a decidable equational theory; the last one
can also be handled as a special case by ProVerif [18].

The main process is defined in Figure 3. It puts in parallel multiple replicated
sub-processes (P | Q represents the two processes P and Q running in parallel,
and the bang operator ! represents unbounded copies of the same process).

The first process produces the identities of the unbounded principals: a fresh
host U and their secret key skU are created in lines 2-3, using the new con-
struction. The public key is constructed through the let binding and assigned



1 process
2 (!new U: host;
3 new skU: skey;
4 let pkU = pk(skU) in
5 out(s, (U, skU, pkU)); out(s, (U, skU, pkU));
6 out(c, (pkU)); phase 1; out(c, skU) ) |
7 (!in(s, (U:host, skU:skey, pkU:pkey));
8 in(s, (V:host, skV:skey, pkV:pkey));
9 new random: bitstring;

10 let PSK = HKDF(g, random, empty, EDHOC PRESHARED) in
11 out(s2, (U, V, PSK)); out(s2, (U, V, PSK)); phase 1; out(c, PSK) ) |
12 (!in(s, (U:host, skU:skey, pkU:pkey));
13 in(s, (V:host, skV:skey, pkV:pkey));
14 (initiatorAsym(U, V, skU, pkU, pkV) |
15 responderAsym(V, U, skV, pkV, pkU)) ) |
16 (!in(s2, (U:host, V:host, PSK:key));
17 (initiatorSym(U, V, PSK) |
18 responderSym(V, U, PSK)) )

Fig. 3. Main ProVerif process

to pkU in line 4. Finally, lines 5 and 6 output on the secret channel s the tu-
ple pU, skU, pkUq, then output the public key pkU on the public channel c, and
through the use of the phase construct reveal the secret key skU after the
protocol ended, that will later be used for checking Perfect Forward Secrecy.4

The replicated process in lines 7-11 models the out-of-bounds registration of
pre-shared keys for the symmetric variant of the protocol: it inputs the principals
U and V from the secret channel s, generates a fresh random value random and
creates the pre-shared key PSK in line 10, which is output in line 11 on another
secret channel s2 that maintains the mapping between the two principals and
their shared key. Also PSK is output on the public channel in phase 1.

Finally, lines 12 through 18 of Figure 3 call the asymmetric and symmetric
variants of the protocol—shown in Figure 1 and Figure 2—after binding the
relevant data through the secret channels s and s2. We will not describe in
detail those processes, as they closely follow the presentation of Section 2 and
we hope the reader is by now acquainted with the language. We will however
present their salient features.

3.1 Asymmetric Variant

Starting with the asymmetric variant of EDHOC in Figure 4, the initiator process
is parameterized by their own identity U and that of the responder V it is

4 The use of phase is a ProVerif-specific extension to the Applied Pi-calculus, which
intuitively disables a process in a later phase to interact with processes from previous
phases, though the attacker’s information is carried through phases. For a more
detailed description of how phases work, we refer to the ProVerif manual [3].



1 let initiatorAsym(U: host, V: host, skU: skey, pkU: pkey, pkV: pkey) =
2 new x: exponent; let E U = exp(g, x) in new S U: bitstring;
3 new N U: nonce; new APP 1A: bitstring; new APP 3A: bitstring;
4 event startInitiatorA(U, V, E U, APP 1A, APP 3A);
5 let msg 1: bitstring = (T1, S U, N U, E U, APP 1A) in
6 out(c, msg 1); in(c, msg 2: bitstring);
7 let (data 2: bitstring, COSE ENC 2: bitstring) = msg 2 in
8 let (=T2, =S U, xS V: bitstring, N V: nonce, xE V: G) = data 2 in
9 let aad 2: bitstring = hash((msg 1, data 2)) in

10 let K: G = exp(xE V, x) in
11 let K 2: key = HKDF(K, aad 2, empty, EDHOC) in
12 let signature 2: bitstring = aeadDecrypt(COSE ENC 2, K 2, aad 2) in
13 let (=idR(pkV), =aad 2, APP 2A: bitstring) = verify(signature 2, pkV) in
14 event midInitiatorA(U, V, xE V, APP 2A);
15 let data 3: bitstring = (T3, xS V) in
16 let aad 3: bitstring = hash((hash((msg 1, msg 2)), data 3)) in
17 let signature 3: bitstring = sign((idI(pk(skU)), aad 3, APP 3A), skU) in
18 let K 3: key = HKDF(K, aad 3, empty, EDHOC) in
19 let COSE ENC 3: bitstring = aeadEncrypt(signature 3, K 3, aad 3) in
20 let msg 3: bitstring = (data 3, COSE ENC 3) in
21 out(c, msg 3);
22 event endInitiatorA(U, V, xE V, APP 2A).
23
24 let responderAsym(V: host, U: host, skV: skey, pkV: pkey, pkU: pkey) =
25 new y: exponent; let E V: G = exp(g, y) in new S V: bitstring;
26 new N V: nonce; new APP 2A: bitstring; new APP 2A’: bitstring;
27 event startResponderA(U, V, E V, APP 2A);
28 in(c, msg 1: bitstring);
29 let (=T1, xS U: bitstring, xN U: nonce, xE U: G, APP 1A: bitstring) = msg 1 in
30 let data 2: bitstring = (T2, xS U, S V, N V, E V) in
31 let aad 2: bitstring = hash((msg 1, data 2)) in
32 let signature 2: bitstring = sign((idR(pk(skV)), aad 2, APP 2A), skV) in
33 let K: G = exp(xE U, y) in
34 let K 2: key = HKDF(K, aad 2, empty, EDHOC) in
35 let COSE ENC 2: bitstring = aeadEncrypt(signature 2, K 2, aad 2) in
36 let msg 2: bitstring = (data 2, COSE ENC 2) in
37 out(c, msg 2); in(c, msg 3: bitstring);
38 let (data 3: bitstring, COSE ENC 3: bitstring) = msg 3 in
39 let (=T3, =S V) = data 3 in
40 let aad 3: bitstring = hash((hash((msg 1, msg 2)), data 3)) in
41 let K 3: key = HKDF(K, aad 3, empty, EDHOC) in
42 let signature 3: bitstring = aeadDecrypt(COSE ENC 3, K 3, aad 3) in
43 let (=idI(pkU), =aad 3, APP 3A: bitstring) = verify(signature 3, pkU) in
44 event endResponderA(U, V, xE U, APP 1A, APP 3A);
45 let signature 2’: bitstring = sign((idR(pkV), aad 2, APP 2A’), skV) in
46 let COSE ENC 2’: bitstring = aeadEncrypt(signature 2’, K 2, aad 2) in
47 let msg 2’: bitstring = (data 2, COSE ENC 2’) in
48 out(c2, msg 2’);
49 let PSK’ = HKDF(K, hash(msg 3), empty, EDHOC PSK Chaining) in
50 out(s2, (U, V, PSK’)).

Fig. 4. Asymmetric protocol



supposed to talk to, along with their private skU and corresponding public
key pkU , as well as the responder public key pkV . A dual set of parameters is
provided to the responder process to put them in communication.

The use of idppkUq and idppkV q is perhaps noteworthy: these are constructed
using the private constructor id , and then used to check whether the attacker
has learned the identity of one of the principals in the protocol. Even though
the attacker has access to all public keys, they cannot construct these terms
themselves, hence they need to learn them from the protocol. This allows to check
whether the attacker can learn the identity of the each principal by checking if
the attacker can obtain the information created with either of the two functions:
idppkUq or idppkV q.

In order to check agreement properties, the initiator and responder pro-
cesses are annotated with the events startInitiatorA, midInitiatorA, endInitia-
torA and startResponderA, endResponderA, respectively. The lack of a corre-
sponding midResponderA is due to the first message being unprotected by any
cryptographic mechanism, therefore the agreement at that point will trivially
not hold.

In order to check whether the secrecy and PFS hold after the completion of
the protocol, a duplicate of message two is created in the lines 45 through 48 of
Figure 4. This message will be sent on a different channel that the processes do
not listen to but the attacker does. It is hereby possible to check if the attacker
can obtain the application data of message 2 after the completion of the protocol.

Finally, at the end of the responder process on line 49 of Figure 4, a pre-
shared key PSK 1 is generated from the Diffie-Hellman shared secret, and then
inserted into channel s2, which serves as a key-store for U and V .

3.2 Symmetric Variant

Figure 4 shows the symmetric variant of the protocol. It is parameterized by the
identities of the hosts and the pre-shared key PSK that is used to establish the
session. Like for the asymmetric variant, it is annotated with events that mark
various steps of the protocol, with a lack of a mid -event for the responder. Also
the events for the privacy of the initiator and responder are missing in this case,
since the symmetric variant does not use at all public keys.

To check the secrecy and PFS properties after the completion of the protocol,
the symmetric version similar to the asymmetric version creates a duplicate of
the second message in the lines 39–41 of Figure 4.

Similarly to the asymmetric version, the responder process is also responsible
for inserting a new pre-shared key PSK 1 derived from the Diffie-Hellman secret
in lines 42–44, making use of the “EDHOC PSK Chaining” mode of the standard.
Note the conditional in line 42: in our model we do not allow inserting a key
derived using “EDHOC PSK Chaining” from one that was itself derive using the
same technique. Doing so leads to the tool not terminating.



1 let initiatorSym(U: host, V: host, PSK: key) =
2 new x: exponent; let E U: G = exp(g, x) in new S U: bitstring;
3 new N U: nonce; new APP 1S: bitstring; new APP 3S: bitstring;
4 event startInitiatorS(U, V, E U, APP 1S, APP 3S);
5 let msg 1: bitstring = (T4, S U, N U, E U, APP 1S) in
6 out(c, msg 1); in(c, msg 2: bitstring);
7 let (data 2: bitstring, COSE ENC 2: bitstring) = msg 2 in
8 let (=T5, =S U, xS V: bitstring, xN V: nonce, xE V: G) = data 2 in
9 let aad 2: bitstring = hash((msg 1, data 2)) in

10 let K: G = exp(xE V, x) in
11 let K 2: key = HKDF(K, aad 2, PSK, EDHOC) in
12 let (APP 2S: bitstring) = aeadDecrypt(COSE ENC 2, K 2, aad 2) in
13 event midInitiatorS(U, V, xE V, APP 2S);
14 let data 3: bitstring = (T6, xS V) in
15 let aad 3: bitstring = hash((hash((msg 1, msg 2)), data 3)) in
16 let K 3: key = HKDF(K, aad 3, PSK, EDHOC) in
17 let msg 3: bitstring = (data 3, aeadEncrypt(APP 3S, K 3, aad 3)) in
18 out(c, msg 3);
19 event endInitiatorS(U, V, xE V, APP 2S).
20
21 let responderSym(V: host, U: host, PSK: key) =
22 new y: exponent; let E V: G = exp(g, y) in new S V: bitstring;
23 new N V: nonce; new APP 2S: bitstring; new APP 2S’: bitstring;
24 event startResponderS(U, V, E V, APP 2S);
25 in(c, msg 1: bitstring);
26 let (=T4, xS U: bitstring, N U: nonce, xE U: G, APP 1S: bitstring) = msg 1 in
27 let data 2: bitstring = (T5, xS U, S V, N V, E V) in
28 let aad 2: bitstring = hash((msg 1, data 2)) in
29 let K: G = exp(xE U, y) in
30 let K 2: key = HKDF(K, aad 2, PSK, EDHOC) in
31 let msg 2: bitstring = (data 2, aeadEncrypt(APP 2S, K 2, aad 2)) in
32 out(c, msg 2); in(c, msg 3: bitstring);
33 let (data 3: bitstring, COSE ENC 3: bitstring) = msg 3 in
34 let (=T6, =S V) = data 3 in
35 let aad 3: bitstring = hash((hash((msg 1, msg 2)), data 3)) in
36 let K 3: key = HKDF(K, aad 3, PSK, EDHOC) in
37 let (APP 3S: bitstring) = aeadDecrypt(COSE ENC 3, K 3, aad 3) in
38 event endResponderS(U, V, xE U, APP 1S, APP 3S);
39 let COSE ENC 2’: bitstring = aeadEncrypt(APP 2S’, K 2, aad 2) in
40 let msg 2’: bitstring = (data 2, COSE ENC 2’) in
41 out(c2, msg 2’);
42 if(getAlgorithm(PSK) = EDHOC PRESHARED) then
43 let PSK’ = HKDF(K, hash(msg 3), PSK, EDHOC PSK Chaining) in
44 out(s2, (U, V, PSK’)).

Fig. 5. Symmetric protocol



4 Security Properties

In this Section, we present the definitions used to check the properties that we
claim in Section 2.3, in terms of ProVerif queries.

Identity protection against an active adversary The protocol reveals the identity
of the initiator against an active adversary if the attacker can obtain the term
idI ppkUq for any public key pkU registered to an honest party. Likewise, the
protocol reveals the identity of the responder from an active adversary if the
attacker can obtain the term idRppkUq for any public key pkU registered to an
honest party. As we expect, ProVerif confirms that the identity of the initiator
kept private, whereas the identity of the responder is revealed.

Secrecy of data, perfect forward secrecy We measure secrecy and perfect forward
secrecy of APP2 and APP3. That is, we check whether the attacker is able
to obtain the application data from the second and the third message of the
protocol, in both the symmetric and asymmetric variants. In the asymmetric
variant, we find that APP2 is not secret unless the session completes, while
APP3 is secret. These properties are maintained for completed sessions even
after revealing the long-term keys. In the symmetric variant, APP2 is secret (but
not after revealing the long-term keys with incomplete sessions), and APP3 is
secret even after revealing long-term keys. These results match our claims on
Table 1 for the columns “Secrecy” and “PFS” as well as their corresponding
“(at completion)” columns.

Strong authentication In our model, all correspondence agreements between the
initiator and the responder hold. Note that in both versions, when the initiator
U ends the protocol, or even when they receive the second message, we have no
assurance that the responder intended to talk to U , thus we leave freedom of
choice for another U 1 on these correspondence checks. This is obviously accept-
able: because of the unprotected nature of the first message the responder has no
way to check the identity of the initiator until it reaches the end of the protocol.
This is reflected by the other side of the correspondence, that matches in all
parameters, including the application data. Hence we can confirm the integrity
of all application data at the completion of the protocol, and also the integrity of
APP2 when the initiator receives it, in both cases. However since the responder
is not certain of the identity of the initiator when sending APP2, that payload
should not contain any information about that is confidential for them.

5 Conclusion

The EDHOC protocol is the result of a clean slate design of an authentication
protocol for IoT devices that is light weight, easy to implement, and that does
not have any legacy modes. The protocol is currently under consideration for
standardization, with the next step being to prove the standardization body that



the protocol is secure. In this work, we describe a formal analysis of the protocol
in the symbolic model using the ProVerif tool. We have identified security issues
and hidden assumptions, which have led to further refinements of the EDHOC
protocol. ProVerif has been an excellent tool to conduct this work, although,
our model had to be carefully engineered, not to get in trouble with the well-
known over-approximations that ProVerif models entail. In general we would
recommend that any protocol that is used in security sensitive domains and
considered for standardization should be modelled using formal methods and
verified using mechanized reasoning tools, such as ProVerif.

Future work The protocol has been analyzed alone, whereas it is intended to
be used in conjunction with other protocols, including the secure data trans-
port standard “Object Security for Constrained RESTful Environments” (OS-
CORE [4]), for which EDHOC creates an explicit context (i.e. session keys).
Protocol composition is not automatically guaranteed, and is an active area of
research in the theory of protocol security. Even though it is reassuring to know
that the OSCORE session key is never used nor is derivable from an EDHOC
key (though it is derivable from the Diffie-Hellman exchange), it would be in-
teresting to conduct a formal analysis of those standards that are meant to be
used in conjunction. Other involved standards that would require further anal-
ysis would be the CBOR binary format [13], and the COSE [12] standard of
encryption formats, which are used by EDHOC for formatting messages, and
mimick the JSON web standard and JOSE encryption standard that sits on top
of it. Furthermore, since the protocol is at its first version and only mandates
the use of algorithms that are currently deemed secure, we have not modelled
downgrade attacks. It will be helpful to extend this model to consider downgrade
attacks, once new versions of the EDHOC are released.

The next iteration of the EDHOC protocol, draft 09 [19], has incorporated our
findings, and the authors decided to move away from encrypting the application
data contained in the second message, in an effort to simplify the protocol and
offer weaker—but clearer—security guarantees. This work has provided useful
input to the designers of EDHOC, and the authors intend to evolve the models
with the evolution of the standard, so as to provide useful input and higher
assurance on the correctness of its design.

References

1. Göran Selander, John Mattsson, F.P.: Ephemeral diffie-hellman over cose (ed-
hoc). https://tools.ietf.org/html/draft-selander-ace-cose-ecdhe-08 (2018) [Online;
accessed 10 May. 2018].

2. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. Internet-
Draft draft-ietf-tls-tls13-28, Internet Engineering Task Force (2018) Work in
Progress.

3. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: Proverif 2.00: Automatic cryp-
tographic protocol verifier, user manual and tutorial (2018)



4. Selander, G., Mattsson, J., Palombini, F., Seitz, L.: Object Security for Constrained
RESTful Environments (OSCORE). Internet-Draft draft-ietf-core-object-security-
13, Internet Engineering Task Force (2018) Work in Progress.

5. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Annual International Cryptology
Conference, Springer (2003) 400–425

6. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: Security and Privacy (SP),
2017 IEEE Symposium on, IEEE (2017) 483–502

7. Blanchet, B.: Cryptoverif: Computationally sound mechanized prover for crypto-
graphic protocols. In: Dagstuhl seminar “Formal Protocol Verification Applied.
Volume 117. (2007)

8. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A compre-
hensive symbolic analysis of tls 1.3. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ACM (2017) 1773–1788

9. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The tamarin prover for the symbolic
analysis of security protocols. In: International Conference on Computer Aided
Verification, Springer (2013) 696–701

10. Meadows, C.: Analysis of the internet key exchange protocol using the nrl protocol
analyzer. In: Security and Privacy, 1999. Proceedings of the 1999 IEEE Symposium
on, IEEE (1999) 216–231

11. Canetti, R., Krawczyk, H.: Security analysis of ike’s signature-based key-exchange
protocol. In: Annual International Cryptology Conference, Springer (2002) 143–
161

12. Jim Schaad, A.C.: Cbor object signing and encryption (cose).
https://tools.ietf.org/html/rfc8152 (2010) [Online; accessed 10 May. 2018].

13. Bormann, C.: Concise binary object representation (cbor).
https://tools.ietf.org/html/rfc7049 (2013) [Online; accessed 10 May. 2018].

14. Krawczyk, D.H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation
Function (HKDF). RFC 5869 (2010)

15. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: Mobile values, new
names, and secure communication. J. ACM 65 (2018) 1:1–1:41

16. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions
on information theory 29 (1983) 198–208

17. Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and proverif. Foundations and Trends in Privacy and Security 1 (2016) 1–135

18. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of diffie-
hellman protocols and advanced security properties. In: Computer Security Foun-
dations Symposium (CSF), 2012 IEEE 25th, IEEE (2012) 78–94

19. Selander, G., Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman Over COSE
(EDHOC). Internet-Draft draft-selander-ace-cose-ecdhe-09, Internet Engineering
Task Force (2018) Work in Progress.


	Formal Verification of Ephemeral Diffie-Hellman Over COSE (EDHOC)

