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Abstract

There are already several formalizations of probability theory in the Coq proof assistant with
applications to mathematics, information theory, and programming languages. They have been
developed independently, do not cover the same ground, and a substantial effort is required to
make them inter-operate. In this presentation, we report about an on-going effort in Coq to port
and generalize a library about finite probabilities to a more generic formalization of real analysis
called MathComp-Analysis. This gives us an opportunity to generalize results about convexity
and probability and to enrich the library of probability inequalities. We explain our process of
formalization and apply the resulting library to an original formalization of random sampling.

An overview of formalization of probabilities in Coq We know of several formalizations of
probabilities in Coq1 . InfoTheo is a formalization of finite probabilities that has been used to formalize
information theory, error-correcting codes, and robust statistics (e.g., [5, 9]). Discrete probabilities has
been formalized in coq-proba [18] and used to reason about programs (e.g., [10]). FormalML contains
advanced theorems on probability theory [19, 20]. On the other hand, the MathComp-Analysis library,
built on top of the Mathematical Components library [14], provides a rich formalization of measure
theory and Lebesgue integral [2, 13]. In particular, MathComp-Analysis has been used to formalize
probabilistic programming [3, 17].

Porting convexity results from InfoTheo to MathComp-Analysis We learn from InfoTheo
that dealing with probabilities benefits from having a theory of convex spaces, to represent, among
others, convex functions [6, Sect. 3.3]. A convex space is a mathematical structure with an operator
written a <| p |> b (where p is a real number between 0 and 1) that expresses convex combination and
a few axioms about this operator (skewed commutativity, quasi-associativity, etc.). Convex spaces are
advantageously formalized using Hierarchy-Builder [8], a tool to build hierarchies of mathematical
structures, see [12, convex.v]. The operator for convex combination is better handled with a dedicated
type for real numbers between 0 and 1 (to represent the p in a <| p |> b), and InfoTheo provides such a
specific type. On the other hand, MathComp-Analysis also had theories for positive and non-negative
real numbers (i.e., real numbers in ]0,+∞[ and [0,+∞[). We figured out that real numbers in [0, 1] can
be handled similarly, thus providing a type {i01 R} to write convexity statements, e.g., [1, convex.v]:

Definition convex_function (R : realType) (D : set R) (f : R -> R) :=

forall t : {i01 R}, {in D &, forall (x y : R), f (x <| t |> y) <= f x <| t |> f y}.

Using convex spaces and convex functions from MathComp-Analysis, we have been able to port results
from InfoTheo such as the convexity of the exponential function [1, hoelder.v]:

Lemma convex_powR p : 1 <= p -> convex_function `[0, +oo[ (fun x : R => powR x p).

We are also planning to port more related results from InfoTheo such as conical spaces [4, Sect. 4].

Basic definitions of probability theory in MathComp-Analysis Probability measures come
from basic definitions about measure theory. A measure µ satisfies the following: µ(∅) = 0, 0 ≤ µ(A)
for any A, and σ-additivity: µ(

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai) for countably many pairwise disjoint Ai’s [1,

measure.v]. A probability measure extends a measure with the following interface (giving rise to a type
probability T R):

1It should be noted that other proof assistants also provide substantial accounts of probability theory (in particular in
Isabelle/HOL [11, 7]).



HB.mixin Record isProbability d (T : measurableType d) (R : realType) (P : set T -> \bar R) :=

{ probability_setT : P setT = 1 }. (* setT is the full set *)

The Lebesgue integral (noted \int[mu]_(x in A) f x [2, Sect. 6.4]) is used to formalize the notions
of expectation, covariance, and variance [1, probability.v], e.g., for the expectation (noted 'E_P[X]):

Definition expectation d (T : measurableType d) (R : realType) (P : probability T R)

(X : T -> R) := \int[P]_w (X w)%:E. (* %:E turns real numbers into extended real numbers *)

Random variables are essentially measurable functions (noted {mfun T >-> R}). Like in InfoTheo,
the probability measure P of the underlying space is encoded as a phantom type:

Definition random_variable d (T : measurableType d) (R : realType) (P : probability T R) :=

{mfun T >-> R}.

Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

This way, when we write {RV P >-> R} for the type of a random variable, we understand that the
underlying sample space is the one corresponding to the probability measure P.

We useHierarchy-Builder and the theory of cardinality of MathComp-Analysis [1, cardinality.v]
to extend the mathematical structure of random variables to the one of discrete random variables:

HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Let {dRV P >-> R} be the type of discrete random variables. From a discrete random variable X we can
derive a function dRV_enum to enumerate the values ak it takes and a function enum_prob to enumerate
the weigths ck so that the distribution PX of X can be written as a countable sum of Dirac measures∑

k ckδak
, eventually recovering the fact that the expectation of X is

∑
k ckak (using the properties of

the Lebesgue integral):

Lemma distribution_dRV A : measurable A ->

distribution P X A = \sum_(k <oo) enum_prob X k * \d_(dRV_enum X k) A. (* \d_ is for δ *)

The last bit of our basic setting of probability theory in MathComp-Analysis consists of the
definition of Lp spaces. For that purpose, we prove Hölder’s inequality:

Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->

'N_1 [f \* g] <= 'N_p [f] * 'N_q [g]. (* \* is the pointwise multiplication *)

The notation 'N_p[f] denotes the Lp norm of f. This theorem relies on the formalization of convexity
mentioned above. Cauchy-Schwarz’s inequality is widely used in probability theory and is just a special
case of Hoelder’s where p = q = 2. Furthermore, Hoelder’s inequality can be used to prove Minkowski’s
inequality:

Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g]. (* \+ is the pointwise addition *)

This lemma shows that Lp spaces are normed vector spaces.

Recent and current work We further extend the above setup with fundamental inequalities such
as Markov’s, Chernoff’s, Chebyshev’s, and Cantelli’s, etc. We are now working on defining precisely Lp

spaces withMathComp’s generic quotients. Our development has already been used in the verification of
worst-case failure probability of real-time systems [15]. We are tackling the formalization of a sampling
theorem [16, Theorem 3.1] which requires formalizing notions of random trials, independent random
variables, and makes use of Chernoff’s bound:

Theorem sampling (X_ : seq {RV P >-> R}) (theta delta p : R) :

let n := size X_ in let X' x := ((\sum_(Xi in X_) Xi) x) / n%:R in is_bernoulli_trial X n ->

0 < p <= 1 -> 0 < delta <= 1 -> 0 < theta < p -> 0 < n -> 3 / theta^+2 * ln(2 / delta) <= n%:R

-> P [set i | `| X' i - p | <= theta] >= 1 - delta%:E.
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