
Formalizing concentration inequalities in Rocq:
infrastructure and automation
Reynald Affeldt # �

National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan

Alessandro Bruni #�

IT University of Copenhagen, Denmark

Cyril Cohen #�

Inria, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP, UMR 5668, Lyon, France

Pierre Roux #�

ONERA/DTIS, Université de Toulouse, France

Takafumi Saikawa #�

Nagoya University, Japan

Abstract
Concentration inequalities are standard lemmas providing upper bounds on deviations of random
variables. To formalize concentration inequalities, we have been developing a general library of lemmas
for probability theory in the Rocq prover. This effort led us to revisit already established technical
aspects of the Mathematical Components libraries. In this paper, we report on improvements
of general interest resulting from our formalization. We devise types for numeric values and a
lightweight semi-decision procedure, based on interval arithmetic. We also extend the hierarchy of
available mathematical structures to formalize Lebesgue spaces. We illustrate our new formalization
of probability theory with the complete proof of a concentration inequality for Bernoulli sampling.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Type theory; Mathematics of computing → Probability and statistics

Keywords and phrases Rocq prover, Mathematical Components library, abstraction interpretation,
probability theory, concentration inequalities

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.21

Supplementary Material This paper is accompanied by a Rocq development, see details in Fig. 2.

Acknowledgements The authors are grateful to S. Sonoda for his inputs. The authors would like
to thank the anonymous referees of ITP 2025 for their careful and informative review. The first
and last authors acknowledge support of the JSPS KAKENHI Grant Number 22H00520, the second
author acknowledges support of the Carlsberg Foundation, grant CF24-2347.

1 Introduction

Our motivation is the formalization of concentration inequalities in the Rocq prover [35].
Concentration inequalities are inequalities of the form Pr [X ≥ t] ≤ b, which bound the
probability of a random variable X being greater than a given threshold t. The random
variable X is typically a distance between a more primitive random variable X and some
integral involving X, thus representing the deviation of X from one of its characteristic values.
A prime example is Chebyshev’s inequality Pr [| X − E[X] | ≥ t] ≤ V[X]

t2 . Concentration
inequalities are used in a wide variety of contexts [13] with concrete applications, e.g., the
verification of worst-case failure probability of real-time systems [25], risk-limiting audits [31],
etc.

The theory of concentration inequalities involves technical developments relying on discrete
© Reynald Affeldt, Alessandro Bruni, Cyril Cohen, Pierre Roux, and Takafumi Saikawa;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 21; pp. 21:1–21:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:reynald.affeldt@aist.go.jp
https://orcid.org/0000-0002-2327-953X
mailto:brun@itu.dk
https://orcid.org/0000-0003-2946-9462
mailto:cyril.cohen@inria.fr
https://orcid.org/0000-0003-3540-1050
mailto:pierre.roux@onera.fr
https://orcid.org/0000-0003-2910-4738
mailto:tscompor@gmail.com
https://orcid.org/0000-0003-4492-745X
https://doi.org/10.4230/LIPIcs.ITP.2025.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Formalizing concentration inequalities in Rocq: infrastructure and automation

mathematics, real analysis, and probability theory. We believe that the complexity of the
formal development of a full-fledged theory of concentration inequalities requires a solid
infrastructure with a fair share of automation. The Mathematical Components library [24]
(hereafter, MathComp) is well-known to provide tooling that takes advantage of the type
system of the Rocq prover to efficiently formalize hierarchies of mathematical structures
(as implemented by the Hierarchy-Builder tool [16]). In addition, the Rocq prover
provides automation in the form of verified decision procedures for arithmetic [34] and
tactics for numerical computations [27, 28]. This automation should come in handy when
dealing with the analytical arguments that are inevitably part of the proofs of concentration
inequalities. Yet, existing accounts of probability theory in Rocq do not seem to lend
themselves easily to extension: InfoTheo [21] is restricted to probabilities supported by
a finite set, FormalML [36] relies on a formalization of real analysis with limited support
for measure theory [12], coq-proba [33] is limited to discrete probability spaces. With this
respect, the more recent MathComp-Analysis library [1], which extends MathComp and
provides a rich formalization of real analysis and measure theory [?, 2, 22], appears like a
good candidate to develop a more versatile formalization of probability theory.

In this paper, we report on the development of probability theory on top of MathComp
and MathComp-Analysis. We contribute improvements of general interest for concrete
applications of formal probability theory and real analysis. Indeed, our new development of
probability theory led us to revisit already established technical aspects of MathComp and
MathComp-Analysis.

Our first improvement is the extension of the existing infrastructure of MathComp-
Analysis to deal automatically with positive and non-negative numbers [3, Appendix A.2.1].
We devise types for numeric values and a lightweight semi-decision procedure, based on
interval arithmetic. Among these types, the type for numbers between 0 and 1 appears
naturally in probability theory, in particular when formalizing Minkowski’s inequality, which
in turn is used in the construction of Lebesgue spaces. Lebesgue spaces refer either to
spaces of measurable functions whose absolute value raised to the pth power has a finite
integral (hereafter, Lp spaces), or to the quotient of those by equality almost everywhere
(hereafter, Lp spaces). They are pervasive in probability theory, in particular to express
succinctly integrability conditions. To complete the formalization of Lp and Lp spaces, we
develop the theory of essential supremums/infimums and extend the MathComp hierarchy
of mathematical structures to support seminorms, in a conservative manner thanks to the
Hierarchy-Builder tool [16]. These two improvements (types for numeric values within
a range and the lemmas used to formalize Lp and Lp spaces) are useful additions beyond
probability theory (for example, Lp and Lp spaces are central in functional analysis).

Finally, we illustrate the resulting library of probability theory with a formalization of
a sampling theorem [29, Exercise 4.5], which is an example of a concentration inequality
itself relying on standard concentration inequalities. We aim to show with this example
that we do provide an infrastructure that makes the formal verification of concentration
inequalities practical, for example by leveraging on automation to simplify unavoidable
analytical arguments.

Outline

In Sect. 2, we explain library support to equip numeric values with a type that contains
range information. In particular, an instance of this type is used to formalize convexity in
Sect. 2.4. Sect. 3 is a brief overview of measure theory and its notations. In Sect. 4, we
explain how we formalize Lp spaces. In particular, we explain in Sect. 4.3.2 how we use our

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:3

formalization of convexity to prove Minkowski’s inequality, used to establish the properties
of Lp spaces. In Sect. 5, we provide an overview of how we use the Lebesgue integral to
formalize the basics of probability theory. Our main use-case is a formalization of a sampling
theorem in Sect. 6. We review related work in Sect. 7 and conclude in Sect. 8.

2 Automation for numeric interval inference

When formalizing analysis results, it is common to encounter many side-proofs about the
sign of simple expressions. For instance when doing continuity proofs, one often manipulates
ε variables that are positive [3, Appendix A.2.1]. Similarly, here, results about convexity
involve λ parameters that must remain in the [0, 1] interval. For instance, for any x ∈ [0, 1],
it is obvious that 1 − xn also lies in that [0, 1] interval, for any n ∈ N. Repeatedly stumbling
on this kind of side goals can rapidly become cumbersome when doing formal proofs. That
is why we automate these proofs. We do so by using canonical structure inference1 to
perform interval arithmetic [39]. More precisely, we first define a structure and then canonical
instances of it for the operators of interest, thus providing interval abstractions for these
operators. The convenience of the abstract interpretation [17] framework here is that we
only need to prove correctness, not optimality of the abstractions. This means that there is
no need to implement upfront a complete set of instances. Very coarse instances can already
give worthwhile results, for a light proof effort. This initial set of instances can then be later
refined on-demand.

2.1 Interval structure
We went through several implementations of a semi-decision procedure to automatically
prove some positivity and non-negativity goals, extending it successively to cover negativity
and non-positivity2 and then membership to arbitrary integer intervals3, thus covering more
use cases for the same price.

We build on top of the interval type already provided by MathComp [?, interval.v],
that is4:

Variant itv_bound (T : Type) : Type := BSide of bool & T | BInfty of bool.
Variant interval (T : Type) := Interval of itv_bound T & itv_bound T.

In the context of definition of intervals, the boolean parameter of BSide indicates
whether the bound is open or closed, depending on its side, whereas the one of
BInfty distinguishes +∞ and −∞. For instance, the interval [0, +∞[is encoded as
Interval (BSide true 0) (BInfty int false). We first define a type for our intervals. Since
we may want to handle non-real values (for instance complex numbers), we just add a Top
case to encompass any value, possibly non-real.

Module Itv. (* the definition of this module continues next page *)
Variant t := Top | Real of interval int.

1 A restricted form of type classes offered by Coq since almost three decades.
2 https://github.com/math-comp/analysis/pull/511
3 https://github.com/math-comp/analysis/pull/1410
4 The use of the ampersand (&) to write inductive types comes from the SSReflect extension of Rocq;

see “Anonymous arguments” in [?].

ITP 2025

https://github.com/math-comp/analysis/pull/511
https://github.com/math-comp/analysis/pull/1410

21:4 Formalizing concentration inequalities in Rocq: infrastructure and automation

Note the use of the type int for integers from MathComp, based on the unary Rocq nat
type for natural numbers. At first sight, this might look restrictive and potentially yielding
performance issues. However, in our work, we only manipulate bounds with small integer
values such as 0 or 1, so these issues do not arise. We plan to generalize our approach to
rational bounds and introduce more efficient encodings in the future.

The interval type t is equipped with the usual inclusion order

Definition sub (x y : t) := match x, y with _, Top => true | Top, Real _ => false
| Real xi, Real yi => subitv xi yi end.

using subitv, defined in MathComp as [?, interval.v]:

Definition subitv i1 i2 :=
let: Interval b1l b1r := i1 in let: Interval b2l b2r := i2 in
(b2l <= b1l) && (b1r <= b2r).

The semantics of values of type T within a given interval is parameterized. We provide
semantics for several types: numDomainType5, nat, and extended real numbers R.

1 Section Itv_def.
2 Context T (sem : interval int -> T -> bool).
3 Definition spec (i : t) (x : T) := if i is Real i then sem i x else true.
4 Structure def (i : t) := Def { r : T; P : spec i r }.
5 End Itv_def.

The def type (line 4) is the main type for “value r within an interval i” where the P field is
the proof of r ∈ i. The specifics of that property depend on the sem parameter, for instance,
for natural numbers it is

Definition nat_sem (i : interval int) (x : nat) : bool := Posz x \in i.

where Posz is a constructor for integers, which is semantically the canonical injection from
natural numbers into integers. The most commonly used semantics will be the one for
numDomainType, which, for historical reasons, is the basic MathComp type for algebraic
structures with a compatible order relation6:

Definition num_sem (R : numDomainType) (i : interval int) (x : R) : bool :=
(x \in Num.real) && (x \in map_itv intr i).

where x \in Num.real means that x is comparable to 0 (i.e., either x ≤ 0 or 0 ≤ x) and intr
is a notation for the Rocq function intmul, which provides the canonical injection from
integers to any ringType.

Finally, we use the phantom type phx to trigger inference of canonical instances for the
above def structure. As usual with phantom types, phx is not used in the body of the
definition but is here only to explicitly provide the r x value that will trigger the inference
of the x interval containing it (@ below is a Rocq notation to disable implicit arguments).

5 A MathComp type for integral domains (i.e., commutative rings with an inverse and such that for any
x and y, having xy = 0 implies x = 0 or y = 0) with a compatible order.

6 As future work, we could generalize this, for instance to additive semigroups with a compatible order,
which would enable us to get rid of the current duplication for addition on nat, numDomainType, and
extended real numbers.

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:5

Definition from {T f i} {x : @def T f i} (phx : phantom T (r x)) := x.
Notation "e %:itv" := (from (Phantom _ e)) : ring_scope.
End Itv. (* module started in the previous page *)

Thus, the notation e%:itv enables to infer a value of type Itv.def whose field Itv.r is e, that
is essentially an interval i along with a proof that e \in i.

Note that the module Itv is closed at this stage and definitions inside can be referred to
by using Itv as a prefix from now.

2.2 Canonical instances
Most of the work now requires registering canonical instances for each operator one may
want intervals to be inferred for. When encountering unknown operators or variables, a
default canonical instance will infer a broad interval based on the type of the expression, for
instance [0, +∞[for natural numbers.

As a first example, we declare that 1 lies in the [1, 1] interval:

(* in Section NumDomainInstances *)
Context {R : numDomainType}.
Lemma num_spec_one : Itv.spec (@Itv.num_sem _) (Itv.Real `[1, 1]) (1 : R).
Proof. by apply/andP; split; [exact: real0 | rewrite /= in_itv/= lexx]. Qed.
Canonical one_inum := Itv.Def num_spec_one.

More elaborate operators can rely on more elaborate programs, as a simple example, let
us look at the implementation of the opposite operator (below, %:num is the Itv.r projection
of the Itv.def structure, keeping only the value r while dropping both the interval i and the
proof P that r ∈ i):

(* in Module IntItv *)
Implicit Types (b : itv_bound int) (i : interval int).
Definition opp_bound b := match b with

| BSide b x => BSide (~~ b) (intZmod.oppz x)
| BInfty b => BInfty _ (~~ b) end.

Definition opp i := let: Interval l u := i in Interval (opp_bound u) (opp_bound l).
Lemma num_spec_opp (i : Itv.t) (x : num_def R i) (r := Itv.real1 opp_itv i) :

Itv.spec (@Itv.num_sem _) r (- x%:num).
Proof. (* a few lines omitted for conciseness *) Qed.
Canonical opp_inum (i : Itv.t) (x : num_def R i) := Itv.Def (num_spec_opp x).

Thus, for instance (- 1)%:itv will trigger the computation of the opposite interval of [1, 1],
that is [−1, −1]. Many more instances are provided for usual operators.

Compared to an implementation based on a reification tactic (implemented for instance
in Ltac or Ltac2), this lightweight solution saves us the implementation of a reification tactic
(we are simply using Rocq’s elaborator) and enables to handle arbitrary new constructs
locally, by simply adding a canonical instance, rather than having to edit a monolithic tactic.

2.3 Hints
To automatically solve subgoals that appear to be “trivially” true by interval arithmetic, we
add a few lemmas and hints like:

ITP 2025

21:6 Formalizing concentration inequalities in Rocq: infrastructure and automation

Lemma gt0 e : unify_itv i (Itv.Real `]0%Z, +oo[) -> 0 < e%:num :> R.
Hint Extern 0 (is_true (0 < _)%R) => solve [apply: gt0] : core.
(* and similarly for lt0, ge0, le0, cmp0, neq0, lt1 and le1 *)

where unify_itv uses some Rocq type class option to trigger the computation of interval
inclusion Itv.sub (see Sect. 2.1). Recall that the notation %:num has been explained in
Sect. 2.2. The notation scopes %Z and %R are respectively for integers and rings.

In the whole MathComp-Analysis library, these hints are triggered 1604 times, auto-
matically solving 729 subgoals. Here are a few examples of such automatically solved goals:

0 <= k%:R / 2 ^+ n 0 ≤ k
2n

0 < (2 ^ n)%:R 0 < 2n

0 < 1 + `|r| 0 < 1 + |r|
0 < (3 + d.*2).*2.+2%:R * (3 + d.*2).*2.+1%:R 0 < (2(3 + 2d) + 2)(2(3 + 2d) + 1)
0 < 1 / (2 ^ i.+1)%:R 0 < 1/2i+1

0 < n.+1%:R^-1 / 2 0 < (n + 1)−1/2
0 < (2 / e%:num) ^+ 2 with e non negative 0 <

(
2
e

)2 with 0 ≤ e

The notation %:R is a MathComp notation for injection from nat to any ringType (like intr

above for int).

2.4 Application to convexity
We learn from previous work that dealing with probabilities benefits from having a theory of
convex spaces, to represent, among others, convex functions [6, Sect. 3.3]. A convex space [32]
is a mathematical structure with a ternary operator that we write a <| p |> b. This operator
represents the convex combination of two points a and b with parameter p, a real number
between 0 and 1. This operator satisfies a few laws [4, Sect. 2]: skewed commutativity,
quasi-associativity, etc. The side condition on p is better handled with a dedicated type for
the interval [0, 1] that we can define using Itv.def (Sect. 2.1):

Notation "{ 'i01' R }" := (Itv.def (@Itv.num_sem R) (Itv.Real `[0, 1]%Z)).

This leads to the following definition of convex function [8, convex.v]:

Definition convex_function (R : realType) (D : set R) (f : R -> R) :=
forall t : {i01 R}, {in D &, forall x y : R, f (x <| t |> y) <= f x <| t |> f y}.

Using convex spaces and convex functions from MathComp-Analysis, we have been able
to port results such as the convexity of the exponential function and the concavity of the
logarithm function from existing work [4, Sect. 6.2].

3 Background: measure theory in MathComp-Analysis

This section provides a brief overview of notions of measure theory as formalized in
MathComp-Analysis.

In MathComp-Analysis, a set can be defined by comprehension with the notation
[set x | P x] where P is a Prop-valued predicate. In particular, the whole set of elements of
type T is noted [set: T]. A σ-algebra is represented by an object of type measurableType d
(d is a parameter used to control notations [2, Sect. 3.4]) that consists of a set of sets (i.e., a
set system) that contains the empty set and that is closed under complement and countable
union [1, measure.v]. The set system of a σ-algebra T is represented by the expression

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:7

measurable T. The type of a measurable function is noted {mfun T >-> T'}. Alternatively,
a measurable function can also be represented by a standard Rocq function between two
measurable types that satisfies the predicate measurable_fun. A measure µ is represented
by an object of type {measure set T -> \bar R} where T is an object of type measurableType
and that satisfies the following properties: µ(∅) = 0, 0 ≤ µ(A) for any subset A of type T,
and σ-additivity, i.e., µ(

⋃∞
i=1 Ai) =

∑∞
i=1 µ(Ai) for countably many pairwise disjoint Ai’s.

Given a type R of real numbers, the notation \bar R corresponds to the type of extended
real numbers; semantically, it is R ∪ {±∞}. The notation %:E (corresponding to the type
constructor EFin) denotes the inclusion from R into \bar R. A probability measure is a
measure whose value for the whole set is 1. It is given the type probability T R where T is a
measurableType and R a type for real numbers. The pushforward measure of a measure mu
by the function f is noted pushforward mu f. The Lebesgue integral with measure mu of a
function f is noted \int[mu]_(x in A) f x [2, Sect. 6.4].

4 Formalization of Lp spaces

In this section, we explain our formal definition of Lp and Lp spaces. Informally, an Lp space
is the set of all functions whose pth power has a finite integral. The measure used for the
integral induces an almost everywhere equality, which allows us to take a quotient. The
resulting quotient set is the corresponding Lp space. Lp and Lp spaces are used in functional
analysis and probability theory to represent integrable functions (L1), square-integrable
functions (L2), etc., i.e., functions whose pth-norm is integrable.

The parameter p ranges over real numbers greater than or equal to 1, as well as the
positive infinity ∞. We begin with the infinity case, where the definition relies on the notion
of essential supremum.

4.1 The essential supremum, an adjunction
The traditional definition of the essential supremum [18] is as an infimum of preimages of final
segments of R of measure zero: esssupµf = inf

{
y | µ

(
f−1 (]y, +∞])

)
= 0

}
. This historical

version, which is still in use in many books, hides its order-theoretic (or more generally,
category-theoretic) nature. Moreover, it requires that various preimages of f are measurable,
unnecessarily forcing f to be measurable.

However, we only ever need its universal property: esssupµf ≤ y ⇐⇒ f
a.e.
≤ µ ∆(y),

where ∆(y) is the constant function valued at y. Regarding the order structures (R, ≤) and
(T µ-meas.−−−−−→ R,

a.e.
≤ µ) as categories, it is the (unique) left adjoint to the constant functor ∆

sending elements of R to the space of measurable functions with the almost everywhere order

relatively to µ, i.e., (T µ-meas.−−−−−→ R) R.
esssupµ

∆

⊢

In Rocq/MathComp, we follow the folklore on adjunctions to define the essential
supremum, instead of using the above mentioned historical definition. Indeed, we use a
construction which would have been an instance of adjoint functor theorem for preorders,
had we formalized it: esssupµf = inf

{
y
∣∣∣f a.e.

≤ µ y
}

, which translates to formal code as

Definition ess_sup mu f := ereal_inf [set y | \forall x \ae mu, f x <= y].

Now we can state and prove the universal property (the adjunction), without any side
condition on the function f , which translates to formal code as follows:

ITP 2025

21:8 Formalizing concentration inequalities in Rocq: infrastructure and automation

Lemma ess_supP f y : reflect (\forall x \ae mu, f x <= y) (ess_sup f <= y).

From this universal property we derive in a couple of lines every single useful property we
require on the essential supremum, such as the following important lemma:

Lemma ess_supD f g : ess_sup (f + g) <= ess_sup f + ess_sup g.

which is a one-liner using the above mentioned universal property.
A key lemma in proving the universal property is the following [8, measure.v]:

Lemma ae_foralln (P : nat -> T -> Prop) :
(forall n, \forall x \ae mu, P n x) -> \forall x \ae mu, forall n, P n x.

It states that the filter “almost everywhere” commutes with countable intersection, which is
a specific property of this filter, and relies on the sigma-additivity of the measure.

4.2 Lp and Lp spaces
The Lp space (1 ≤ p ≤ ∞) is the set of measurable functions f : T → R whose Lebesgue
seminorm Np[f], defined below, is finite. We provide the definition of a seminorm in Sect. 4.3.

We start by defining the function Np[·]. It is essentially the pth root of the integral of
the pth power of the absolute value with p ̸= ∞, and the essential supremum (Sect. 4.1)
otherwise:

Np[f] def=


(∫

|f |p(d µ)
) 1

p 0 < p < ∞
esssupµ|f | p = ∞, µ(T) > 0
0 p = ∞, µ(T) = 0.

In the definition above, we take µ to be the Lebesgue measure.
We formalize the norm Np[·] in Rocq as a total function, i.e., we do not assume in the

definition that 0 < p or that f is measurable, even though most interesting properties of
Np[·] only hold for measurable functions and 1 ≤ p:

Definition Lnorm {d} {T : measurableType d} {R : realType}
(mu : {measure set T -> \bar R}) (p : \bar R) (f : T -> \bar R) :=

match p with
| p%:E => (\int[mu]_x `|f x| `^ p) `^ p^-1
| +oo%E => if mu [set: T] > 0 then ess_sup mu (abse \o f) else 0
| -oo%E => if mu [set: T] > 0 then ess_inf mu (abse \o f) else 0
end.

The notation `^ is for the power function and ^-1 is for the inverse. We use the essential
infimum in the case p = −∞ instead of 0 for compatibility with work in progress [?] but this
is not relevant in this paper. Hereafter, the notation 'N_p[f] denotes Np[f].

We now define the type of functions in the Lp space. For that purpose, we use Hierarchy-
Builder [16], which provides the command HB.mixin to declare interfaces. The interface
for functions in Lp extends the structure for measurable functions. This can be observed
below at line 3, MeasurableFun being the name of the mathematical structure of measurable
functions:

1 HB.mixin Record isLfunction d (T : measurableType d) (R : realType)
2 (mu : {measure set T -> \bar R}) (p : \bar R) (p1 : 1 <= p) (f : T -> R)
3 of @MeasurableFun d _ T R f :=
4 { Lfunction_finite : 'N[mu]_p [EFin \o f] < +oo }.

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:9

Furthermore, we use the interface isLFunction above to define the structure of Lp functions
that is given the type Lfunction mu p1 (details omitted here).

An Lp space consists of the equivalence classes of functions in Lp modulo the equivalence
relation f ∼ g

def= f
a.e.= g. These classes are defined by, first, introducing a relation between

measurable functions

Definition ae_eq_op (f g : {mfun T1 >-> T2}) := `[< f = g %[ae mu] >].

and, second, using the library support provided by MathComp’s generic quotients [15] to
build the quotient of functions modulo equality almost everywhere:

Definition aeEqMfun mu : Type := {eq_quot ae_eq_op}.

with notation {mfun_ mu, T1 >-> T2} and, finally, using Hierarchy-Builder to restrict
these classes of functions to those which have a finite Lebesgue norm (assuming a measure
mu of type {measure set T -> \bar R}):

HB.mixin Record isFinLebesgue mu (p : \bar R) (p1 : 1 <= p)
(f : {mfun_ mu, T >-> R}) :=

{ Lebesgue_finite : 'N[mu]_p [EFin \o f] < +oo) }.

HB.structure Definition LebesgueSpace mu (p : \bar R) (p1 : 1 <= p) :=
{ f of isFinLebesgue _ _ _ mu p p1 f }.

4.3 Equiping Lp spaces with a seminorm
While Lp spaces are normed spaces, Lp spaces are not, since, Np[f] = 0 does not imply f = 0,
but only f = 0 almost everywhere. Instead, Lp spaces are equipped with a seminorm, i.e., a
norm that does not need to be positive definite.

In this section we give the formal definition we use (Sect. 4.3.1) and provide Minkowski’s
inequality (Sect. 4.3.2), which is used to prove the triangle inequality.

4.3.1 Extension of the MathComp hierarchy of mathematical structures
The notion of seminorm is formalized by an interface (that we name Zmodule_isSemiNormed)
with an operator norm (line 3) satisfying the triangle inequality (line 4), homogeneity (line 5),
and symmetry (line 6) only:

1 HB.mixin Record Zmodule_isSemiNormed (R : POrderedZmodule.type) M
2 of GRing.Zmodule M := {
3 norm : M -> R;
4 ler_normD : forall x y, norm (x + y) <= norm x + norm y;
5 normrMn : forall x n, norm (x *+ n) = norm x *+ n;
6 normrN : forall x, norm (- x) = norm x }.

The notation *+ is for iterated addition. Seminorms are taken over an Abelian group
(GRing.Zmodule), returning a value in a partially ordered Abelian group (POrderedZmodule.type).
We can then create a mathematical structure (using the command HB.structure) for semi-
norms by combining the newly introduced Zmodule_isSemiNormed with the mathematical
structure of Abelian groups:

ITP 2025

21:10 Formalizing concentration inequalities in Rocq: infrastructure and automation

HB.structure Definition SemiNormedZmodule (R : porderZmodType) :=
{ M of Zmodule_isSemiNormed R M & GRing.Zmodule M }.

In order to define norms, the condition of positive-definiteness can be provided as an
interface SemiNormedZmodule_isPositiveDefinite extending a seminorm:

HB.mixin Record SemiNormedZmodule_isPositiveDefinite (R : POrderedZmodule.type) M
of @SemiNormedZmodule R M := {

normr0_eq0 : forall x : M, norm x = 0 -> x = 0 }.

The combination of the above two interfaces corresponds to norms:

HB.structure Definition NormedZmodule (R : porderZmodType) :=
{ M of SemiNormedZmodule_isPositiveDefinite R M & SemiNormedZmodule R M }.

In fact, norms were available in MathComp before our work in the form of an inter-
face Zmodule_isNormed. The introduction of seminorms just consisted in splitting it while
preserving the original interface using Hierarchy-Builder’s factories [16, Sect. 2.2]. In
other words, this is a conservative extension of the hierarchy of mathematical structures of
MathComp.

4.3.2 Minkowski’s inequality
Minkowski’s inequality is the main lemma to show that Np[·] (Sect. 4.2) is a seminorm. It
says that for any two measurable functions f and g and any extended real number p ≥ 1, we
have Np[f +g] ≤ Np[f]+Np[g]. It is typically proved by first establishing Hölder’s inequality:

Lemma hoelder f g p q : measurable_fun [set: T] f -> measurable_fun [set: T] g ->
0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->

'N_1[f * g] <= 'N_p%:E[f] * 'N_q%:E[g].

A consequence of Hölder’s inequality which we record in our development is the inclusion of
Lp-spaces for finite measures: i.e., Lq ⊆ Lp when p ≤ q. Then, using hoelder, one proves the
convexity of the p-th power function. This uses the formalization of convexity from Sect. 2.4.

Lemma convex_powR p : 1 <= p -> convex_function `[0, +oo[(fun x : R => powR x p).

Minkowski’s inequality is eventually proved using Hölder’s inequality and the convexity of
the power function:

Lemma minkowski f g (p : \bar R) :
measurable_fun [set: T] f -> measurable_fun [set: T] g -> 1 <= p ->

'N_p[f \+ g] <= 'N_p[f] + 'N_p[g].

This establishes the triangle inequality of the norm Np[·].

5 Probability theory with MathComp-Analysis

5.1 Basic definitions of probability theory
Basic notions of probability theory are direct applications of the Lebesgue integral. For
example, we define the expectation E[X] of a random variable X as follows (notation 'E_P[X]):

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:11

Definition expectation {d} {T : measurableType d} {R : realType}
(P : probability T R) (X : T -> R) := \int[P]_w (X w)%:E.

Note that the expectation is an extended real number [8, probability.v]. The covariance
between two random variables X and Y is another integral E[(X − E[X])(Y − E[Y])]:

Context {d} {T : measurableType d} {R : realType} (P : probability T R).
Definition covariance (X Y : T -> R) :=

'E_P[(X - cst (fine 'E_P[X])) * (Y - cst (fine 'E_P[Y]))].

The function fine is a partial inverse of %:E, returning 0 for infinite inputs. The variance
V[X] (notation 'V_P[X]) is a special case of the covariance:

(* same context as above *)
Definition variance (X : T -> R) := covariance P X X.

We define the distribution of the random variable X : {mfun T >-> T'} by the pushforward
of the probability measure P by X (Sect. 3):

Definition distribution d d' (T : measurableType d) (T' : measurableType d')
(R : realType) (P : probability T R) (X : {mfun T >-> T'}) :=

pushforward P X.

In order to associate explicitly a random variable with its sample space, we introduce a
definition where the sample space appears as a phantom type:

Definition random_variable d d' (T : measurableType d) (T' : measurableType d')
(R : realType) (P : probability T R) := {mfun T >-> T'}.

Notation "{ 'RV' P >-> T' }" := (@random_variable _ _ _ T' _ P).

This way, when we write {RV P >-> T'} for the type of a random variable, we understand
that the underlying sample space is the one corresponding to the probability measure P.

5.2 Basic lemmas of probability theory
The first basic lemmas of probability theory such as Markov’s and Chebyshev’s (concentration)
inequalities are proved easily using the definitions from the previous section.

Markov’s inequality is a basic lemma in the sense that it is used to prove other standard
concentration inequalities such as Chernoff’s inequality. To state the latter, we introduce the
moment-generating function MX(t) def= E

[
etX

]
(notation 'M_X t):

Definition mmt_gen_fun (X : T -> R) t := 'E_P[expR \o t \o* X].

In MathComp-Analysis, the exponential function is expR and the notation \o* is for
multiplication of a function by a constant. Chernoff’s inequality (i.e., Pr[X ≥ a] ≤ MX(r)e−ra

for r positive) is used in Sect. 6 in a concrete application:

Lemma chernoff (X : {RV P >-> R}) (r a : R) : 0 < r ->
P [set x | X x >= a] <= 'M_X r * (expR (- (r * a)))%:E.

ITP 2025

21:12 Formalizing concentration inequalities in Rocq: infrastructure and automation

The supporting theory for the (co)variance benefits from our formalization of Lp-spaces
(Sect. 4). For example, consider the following lemma about the distributivity of covariance
over sums of random variables:

Lemma covarianceDl (X Y Z : T -> R) :
X \in Lfun P 2 -> Y \in Lfun P 2 -> Z \in Lfun P 2 ->

covariance P (X \+ Y) Z = covariance P X Z + covariance P Y Z.

Here, Lfun P 2 represents the set of functions that satisfy the isLfun mixin presented in
Sect. 4.2, i.e., L2. This way, we capture crucially several assumptions about the integrability
of random variables used in the proofs, without loss of generality: namely, that the squares
of X, Y, and Z are integrable, that X, Y, and Z are integrable by Lp-space inclusion, and that
the products X * Y, Y * Z, and X * Z are also integrable.

Cantelli’s inequality is another basic concentration inequality relating the tail of the
distribution of X with its variance, and also a consequence of Markov’s inequality: for any
λ > 0, Pr[X − E[X] ≥ λ] ≤ V[X]

V[X]+λ2 . The formal statement makes use of Lfun and Lp-space
inclusion to express succinctly that both X and its square are integrable:

Lemma cantelli (X : {RV P >-> R}) (lambda : R) :
(X : T -> R) \in Lfun P 2 -> 0 < lambda ->

P [set x | lambda%:E <= (X x)%:E - 'E_P[X]] <= 'V_P[X] / ('V_P[X] + (lambda^2)%:E).

Note that the division that occurs in the left-hand side of the inequality is between extended
real numbers [1, constructive_ereal.v].

5.3 The power measure
We need the notion of the power of a measure to talk about interesting inequalities that
contain multiple random variables. Let T be a measurable space and P be a σ-finite measure
on T . We define the nth power ⊗nP of P recursively on n, by iterating the binary product
measure (notation \x^ in MathComp-Analysis) of P and ⊗n−1P :

1 Fixpoint power_measure n : set (n.-tuple T) -> \bar R :=
2 match n with
3 | 0%N => \d_[::] (* trivial Dirac measure on the singleton set {[::]} *)
4 | m.+1 => fun A => (P \x^ @power_measure m) (pair_of_tuple m @` A)
5 end.

The function pair_of_tuple at line 4 takes as input a tuple of the form x :: xs and returns a
pair (x, xs). The notation @` is for the image of a set. The expression pair_of_tuple m @` A
is therefore the set {(x, xs) | x :: xs ∈ A} of pairs of an element and a tuple of size m. Hereafter,
we use the Rocq notation \X_n P for power_measure P n.

We know that the binary product of measures \x^ is a measure if its first component
is σ-finite [2, Sect. 6.5], and we can therefore inductively prove that ⊗nP (i.e, \X_n P) is a
measure (proof power_measureP [8]). This is recorded by Rocq upon the declaration of the
relevant instance using the command HB.instance of Hierarchy-Builder:

HB.instance Definition _ P n := isMeasure.Build _ _ _ (\X_n P)
(power_measureP P n).1 (power_measureP P n).2.1 (power_measureP P n).2.2.

When P is a probability measure, we also prove that the measure of the whole set by ⊗nP

is 1 (proof power_measureT [8]), hence ⊗nP is a probability measure:

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:13

HB.instance Definition _ P n :=
Measure_isProbability.Build _ _ _ (\X_n P) (power_measureT P n).

6 Application: Formalization of a sampling theorem

The following sampling theorem can be used to estimate the percentage of a large population
with a binary characteristic from a small sample with a given confidence and a given
accuracy [30, Theorem 3.1] [29, Exercise 4.5].

▶ Theorem 1. Given independent 0-1 random variables Xi with Pr[Xi = 1] = p, confidence
0 < δ ≤ 1, and accuracy 0 < θ < p,

if n ≥ 3
θ2 ln

(
2
δ

)
then Pr

[∣∣∣∣ ∑n
i=1 Xi

n
− p

∣∣∣∣ ≤ θ

]
≥ 1 − δ.

This theorem states that if we have a sufficiently large number of Bernoulli random variables
with success probability p and if we allow a small deviation θ from the expected value p, then
the probability that the average of the random variables deviates from the expected value p

by more than θ is at most δ. The condition 3
θ2 ln

(2
δ

)
≤ n expresses the relation between the

sample size n, the deviation θ, and the confidence level 1 − δ.
We start by formalizing the notion of a Bernoulli trial and then present the main steps of

the proof, in particular the application of Chernoff’s inequality (Sect. 5.2).

6.1 Bernoulli trial
We first define a Bernoulli random variable as a boolean-valued measurable function X with the
property bernoulliP (line 3 below): the distribution (Sect. 5.1) of X in P is the Bernoulli mea-

sure bernoulli p, i.e., the probability measure with mass function b 7→
{

p if b

1 − p otherwise :

1 HB.mixin Record RV_isBernoulli d (T : measurableType d) (R : realType)
2 (P : probability T R) (p : R) (X : T -> bool) of @isMeasurableFun d _ T bool X
3 := { bernoulliP : distribution P X = bernoulli p }.

Random variables satisfying the Bernoulli property are endowed with the type bernoulliRV
of BernoulliRV structures:

#[short(type=bernoulliRV)]
HB.structure Definition BernoulliRV d (T : measurableType d) (R : realType)

(P : probability T R) (p : R) := {X of @RV_isBernoulli _ _ _ P p X & }.

We now define the value of a Bernoulli trial. A Bernoulli trial is a sequence of n
independent Bernoulli random variables. We represent the variables as objects of the
type n.-tuple (bernoulliRV P p). We first introduce a function to address the ith random
variable and apply it to the ith projection of elements from the sample space (which is made
of tuples of n elements—see Sect. 5.3):

Definition Tnth n (X : n.-tuple {mfun T >-> R}) i t := (tnth X i) (tnth t i).

ITP 2025

21:14 Formalizing concentration inequalities in Rocq: infrastructure and automation

In other words, Tnth X i is like tnth X i but in the power sample space corresponding to
the power measure ⊗nP . Second, we define the value of a trial as a random variable in the
power sample space:

Definition trial_value n (X : n.-tuple {RV P >-> R}) : {RV (\X_n P) >-> R} :=
\sum_(i < n) Tnth X i.

This construction encodes the independence condition of the variables in a Bernoulli trial.
Finally, we introduce a function real_of_bool to convert a sequence of Boolean random
variables to a sequence of real random variables, giving us eventually the following definition
for the value of a trial of independent Bernoulli random variables:

Definition bool_trial_value n := @trial_value n \o @real_of_bool n.

6.2 Proof of the sampling theorem
First, we prove the following bound for the value of a Bernoulli trial X =

∑
i Xi: MX(t) ≤

eE(⊗nP)[X](et−1) [29, Sect. 4.2.1]. In Rocq this is encoded by the following lemma (see
Sect. 5.2 for the moment generating function):

Lemma mmt_gen_fun_expectation n (X_ : n.-tuple (bernoulliRV P p)) (t : R) :
0 <= t ->

let X := bool_trial_value X_ in
'M_(\X_n P) X t <= expeR ('E_(\X_n P)[X] * (expR t - 1)%:E).

This lemma relies on the independence condition encoded with the power measure \X_n P,
which allows us to express the moment generating function of the sum of the random variables
as the product of the moment generating functions of the individual random variables:

MX(t) = E(⊗nP)
[
etX

]
= E(⊗nP)

[
et(

∑n

i=1
Xi)

]
= E(⊗nP)

[∏n
i=1 etXi

]
=

∏n
i=1 EP

[
etXi

]
=

∏n
i=1 MXi

(t).

Hence we prove the following lemma for the expectation of the product of random variables
defined in the power measure \X_n P (Sect. 5.3):

1 Lemma expectation_power_measure_prod n (X : n.-tuple {RV P >-> R}) :
2 [set` X] `<=` Lfun P 1 ->
3 'E_(\X_n P)[\prod_(i < n) Tnth X i] = \prod_(i < n) 'E_P[tnth X i].

The hypothesis at line 2 says that X regarded as a set of random variables is included in L1.
We then have several inequalities for Bernoulli trials. The first one is [29, Theorem 4.4]:

P [X ≥ (1 + δ)E[X]] ≤
(

eδ

(1 + δ)1+δ

)E[X]

. (1)

Put formally:

Theorem sampling_ineq1 n (X_ : n.-tuple (bernoulliRV P p)) delta :
0 < delta ->
let m := 'E_(\X_n P)[bool_trial_value X] in
(\X_n P) [set i | X i >= (1 + delta) * fine m] <=
((expR delta / ((1 + delta) `^ (1 + delta))) `^ (fine m))%:E.

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:15

The proof uses Chernoff’s bound (Sect. 5.2) and the previous lemma mmt_gen_fun_expectation
to bound the probability of the sum of the random variables deviating from the expected
value by at least (1 + δ)E[X].

In a similar manner we prove, for 0 < δ < 1, three more inequalities that are stated
informally as follows:

P [X ≥ (1 + δ)E[X]] ≤ e− E[X] δ2
3 [29, Theorem 4.4] (2)

P [X ≤ (1 − δ)E[X]] ≤ e− E[X] δ2
2 [29, Theorem 4.5] (3)

P [|X − E[X]| ≥ δ E[X]] ≤ 2e− E[X] δ2
3 [29, Corollary 4.6] (4)

See in the accompanying development sampling_ineq2 for equation (2), sampling_ineq3 for
equation (3), sampling_ineq4 for equation (4).

We finally state and prove the sampling theorem in Rocq:

Theorem sampling n (X_ : n.-tuple (bernoulliRV P p)) theta delta :
let X x := (bool_trial_value X x) / n%:R in
0 < delta <= 1 -> 0 < theta < p ->
3 / theta ^+ 2 * ln (2 / delta) <= n%:R ->
(\X_n P) [set i | `| X' i - p | <= theta] >= 1 - delta%:E.

Figure 1 displays the proof organization. It consists in applying the inequality (4) modulo
some symbolic manipulation of the arithmetic expressions and easy measurability arguments,
and then applying the other inequalities (3), (2), and (1). In the next section, we provide
more insights about the analytical arguments that occur as subgoals of the intermediate
inequalities.

sampling

eqn (4)

eqn (3)

xlnx_lbound_i01

eqn (2)

eqn (1)

mmt_gen_fun_expectation chernoff

xlnx_lbound_i12

Figure 1 Proof organization of the sampling theorem

6.2.1 Proving analytical arguments using MathComp-Analysis and
CoqInterval

One important aspect of the proof of the sampling theorem is the presence of analytical
arguments such as the following one, which provides a lower bound of the function x ln(x):

▶ Lemma 2 (xlnx_lbound_i12). ∀x ∈]0, 1[, x + x2

3 ≤ (1 + x) ln(1 + x)

To proceed with the proof of such a concrete analysis, one has to combine several tools,
such as symbolic computation of derivatives, their relation to monotonicity, properties of
elementary functions such as convexity/concavity, and some automation.

The way to go about Lemma 2 is to define a function x 7→ (1 + x) ln(1 + x) − (x + x2

3),
compute its derivative (namely, x 7→ − 2x

3 + ln(1 + x)), study its sign (it is non-negative in

ITP 2025

21:16 Formalizing concentration inequalities in Rocq: infrastructure and automation

]0, 1[), and conclude based on monotonicity. The computation of the derivative is a matter
of systematically applying standard lemmas and the conclusion is a matter of applying a
lemma about monotonicity. However, studying the sign of the derivative requires a bit more
work. The idea is to use the concavity of ln to reduce the problem to the inequality 2

3 ≤ ln(2)
or equivalently e2 ≤ 8 with e2 = 7.389 · · · .

To prove this inequality, one would have to expand and evaluate the defining series of e

to some degree. Instead of manually doing this, we resort to the interval tactic provided by
CoqInterval [27, 28]. The catch is that it requires expressions to be written using the real
numbers as defined in the Rocq standard library7 (Rdefinitions.R). In other parts of the
code than here, we enjoy the MathComp-Analysis design of axiomatic real numbers, which
allows one to work with any instance of the structure of real numbers (Rdefinitions.R being
one) in terms of generic functions and properties. While the inequality we want to prove is
of the type Rdefinitions.R, it is written with those generic functions. To let CoqInterval
recognize the inequality, we have to translate them into the Rocq standard library functions.
For that purpose, MathComp-Analysis provides a compatibility module (in the form of
the file Rstruct.v). As a result, the goal can be proved in a few lines:

1 Lemma exp2_le8 : exp 2 <= 8. Proof. interval. Qed.
2

3 Lemma exp2_le8_conversion : reflect (exp 2 <= 8) (expR 2 <= 8).
4 Proof.
5 rewrite RexpE (_ : 8%R = 8); last first.
6 by rewrite !mulrS -!RplusE Rplus_0_r !RplusA !IZRposE/=.
7 by apply: (iffP idP) => /RleP.
8 Qed.

At line 1, we prove the desired inequality with the Rocq standard library automatically
using interval. The lemma exp2_le8_conversion shows that it is the same as the corre-
sponding inequality in MathComp-Analysis using expR. The lemma RexpE (line 5) equates
the different definitions of the exponential function from the Rocq standard library and
MathComp-Analysis by observing their defining power series are equal modulo the names
of ring operations. Line 6 proves that the notations 8 in both libraries are the same. This is
done using, among others, the lemma RplusE [1, Rstruct.v] to convert between the additions
in both libraries.

The last step of the proof of inequality (3) features another lower bound argument on
x ln(x):

▶ Lemma 3 (xlnx_lbound_i01). ∀x ∈]0, 1[, x2 − 1 < 2x ln(x)

The proof proceeds similarly to the previous Lemma 2. We first apply the monotonicity
lemma for functions with positive derivative to reduce the goal to an evaluation of the
derivative, then simplify it to a basic property of the exponential function: the inequality
1 + x ≤ ex that is used pervasively in mathematical analysis.

7 For historical reasons, Rocq’s standard library offers a theory of real numbers based on a monolithic
type, whereas MathComp-Analysis bases it on a full algebraic hierarchy, hence the two different
formalizations of real numbers. The CoqInterval library had been developped using the former type.

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:17

7 Related work

Verification of static-analysis tools based on abstract interpretation with a proof assistant
is not new [?], nor is verified interval arithmetic [12, 28]. The novelty of the work offered
in Sect. 2 rather lies in a lightweight semi-decision procedure that can be used smoothly
during interactive development of proofs, to address small subgoals. Another difference
with CoqInterval [28] is that the latter performs floating-point computations, coming with
both higher accuracy and rounding errors, making the distinction between open and closed
intervals essentially useless, contrary to our integer intervals. Both tools are complementary,
as seen in Sect. 6.2.1.

We already mentioned in Sect. 1 that there are already several accounts of probability
theory in the Rocq proof assistant. InfoTheo [21] is a library for probabilities supported
by a finite set that has been applied to information theory, error-correcting codes and robust
statistics [?, ?, 5, 7]. The coq-proba library [33] provides discrete probability spaces with
various standard theorems (including Chernoff’s inequality) and also applications to program
verification (e.g., [20]). The FormalML library [36] contains advanced theorems on probability
theory with applications to program synthesis [38]. It is a priori not limited to discrete
probability spaces and contains a formalization of Lp spaces [?, Sect. 3.4] but restricted to
finite p and probability spaces. Our work is not duplicating efforts in the sense that we
provide more general definitions. Contrary to FormalML, we can rely on a formalization of
the Lebesgue integral [2]. Also, for example, we can show that probability distributions in
InfoTheo are instances of MathComp-Analysis’s definitions, opening the door to sharing
of results.

Since we have just started formalizing probability theory, we do not provide as many
definitions and lemmas as Isabelle/HOL and its Archive of Formal Proofs8. Indeed, Is-
abelle/HOL has long been providing advanced material about probability theory: the theory
of Lp spaces [19], the formalization of the Central Limit Theorem [9], various concentration
inequalities (including Cantelli’s) [?], etc. There are however a few aspects on which our work
improves. In [19], spaces of functions are not represented by a type but as a subset of functions.
This is partly because Lp spaces are difficult to formalize in the absence of dependent types
since such a type is naturally parameterized by p and a measure space [19, Sect. 2]. We define
conjugate exponents using a notion of inverse for extended real numbers (already mentioned
in Sect. 5.2) that seems to lend itself well to the formalization of more properties of conjugate
exponents (see [19, Sect. 3] and [8, hoelder.v]). The inclusion of Lp spaces is proved for
probability spaces in [19, Sect. 5] whereas we prove it for finite measures. Yet, Isabelle/HOL
provides Lp spaces for 0 ≤ p < 1 [19, Sections 5.2 and 5.4], Minkowski’s inequality for
0 < p ≤ 1 [19, Sect. 4], quasi-norms and topological results about them [19, Sect. 2.7], and
more lemmas (e.g., about the multiplication of function in Lp spaces [19, Sect. 5.8]).

Mathlib [37] also provides Lp spaces [26] as a subtype of the space AEEqFun of equivalence
classes of almost everywhere (strongly) measurable functions. According to Sonoda et
al. [?, Sect. 7.2], several concentration inequalities (Markov, Chebyshev, Azuma-Hoeffding)
can be found in mathlib but Isabelle/HOL still offers more lemmas. Regarding the theory of
the essential supremum in mathlib, it is derived as an instance of a more general theory of
countable intersection filters on first countable topologies. It provides the same properties as
we do, and like us, the essential supremum is not directly stated as an adjunction.

Rather than advancing the plethora of lemmas about Lp spaces, our work shows that

8 https://www.isa-afp.org/

ITP 2025

https://www.isa-afp.org/

21:18 Formalizing concentration inequalities in Rocq: infrastructure and automation

Contents Relevant file (and reference) Section in this paper
interval inference interval_inference.v [?] Section 2
essential supremum/infimum ess_sup_inf.v [1] Section 4.1
Lp, Lp spaces hoelder.v [1] Sections 4.2 and 4.3
seminorms numdomain.v [?] Section 4.3.1
basic probability theory probability.v [1] Sections 5.1 and 5.2
power measure, sampling theorem sampling.v [8] Sections 5.3 and 6
compatibility between reals Rstruct.v, Rstruct_topology.v [1] Section 6.2.1

Figure 2 Overview of the formalization explained in this paper

Rocq’s original features can be put in good use: Rocq’s canonical structures are used in
Sect. 2 and Rocq libraries providing automatic tactics for arithmetic and numeric evaluation
are used in Sect. 6. All of these fundamentally rely on the efficient computation capabilities
of Rocq, enabling implementation of reflexive tactics. The use of Hierarchy-Builder
to formalize Lp spaces in Sect. 4 also pertains to the more general topic of formalization of
hierarchies of mathematical structures [10,16].

8 Conclusions

In this paper, we proposed a new formalization of probability theory developed so as to
take advantage of Rocq and MathComp specific features. In particular, we benefited
from Rocq’s type system to automate range inference of values and we used Hierarchy-
Builder to make the hierarchy of mathematical structures of MathComp evolve to cover
Lp spaces. We also saw that the availability of a theory for Lp allows for succinct statements
of basic lemmas of probability theory such as standard concentration inequalities. Using our
development, we formalized a sampling theorem which is itself a concentration inequality
and observed in particular that the formalization of analytical arguments benefited from the
automation available in Rocq. Figure 2 provides an overview of the formalization.

Future work

Now that we have laid down the foundations of a new formalization of probability theory,
we are planning to port existing results from related Rocq libraries, e.g., conical spaces [4,
Sect. 4].

The sampling theorem we proved is an example of concentration inequality for statistical
procedures used to effectively reduce the sample size to achieve a certain precision in a
statistical estimation. We aim at further generalizing our results towards the formalization
of complex procedures such as risk-limiting audits [31], i.e., statistical procedures used after
elections to ascertain that a potential error in counting the ballots does not alter the final
election result. We also plan to apply our formalization of Lp spaces to give semantics to
logics used in machine learning as devised by Capucci [?, 14].

References
1 Reynald Affeldt, Clark W. Barrett, Alessandro Bruni, Ieva Daukantas, Harun Khan, Takafumi

Saikawa, and Carsten Schürmann. Robust mean estimation by all means (short paper). In 15th
International Conference on Interactive Theorem Proving (ITP 2024), September 9–14, 2024,
Tbilisi, Georgia, volume 309 of LIPIcs, pages 39:1–39:8. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.39.

https://doi.org/10.4230/LIPICS.ITP.2024.39

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:19

2 Reynald Affeldt, Yves Bertot, Alessandro Bruni, Cyril Cohen, Marie Kerjean, Assia Mahboubi,
Damien Rouhling, Pierre Roux, Kazuhiko Sakaguchi, Zachary Stone, Pierre-Yves Strub,
and Laurent Théry. MathComp-Analysis: Mathematical components compliant analysis
library. https://github.com/math-comp/analysis, Jul 2025. Since 2017. Latest stable
version: 1.12.0.

3 Reynald Affeldt, Alessandro Bruni, Cyril Cohen, Pierre Roux, and Takafumi Saikawa.
Formalizing concentration inequalities in Rocq: infrastructure and automation. https:
//github.com/math-comp/analysis/pull/1645, Jul 2025. Development corresponding to
Sections 5.3 and 6. Pull request to [1].

4 Reynald Affeldt and Cyril Cohen. Measure construction by extension in dependent type
theory with application to integration. J. Autom. Reason., 67(3):28, 2023. doi:10.1007/
s10817-023-09671-5.

5 Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization techniques for asymptotic
reasoning in classical analysis. J. Formaliz. Reason., 11(1):43–76, 2018. doi:10.6092/issn.
1972-5787/8124.

6 Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. Formal adventures in convex
and conical spaces. In 13th Conference on Intelligent Computer Mathematics (CICM 2020),
Bertinoro, Forli, Italy, July 26–31, 2020, volume 12236 of Lecture Notes in Artificial Intelligence,
pages 23–38. Springer, Jul 2020. doi:10.1007/978-3-030-53518-6_2.

7 Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. A library for formalization
of linear error-correcting codes. J. Autom. Reason., 64(6):1123–1164, 2020. doi:10.1007/
s10817-019-09538-8.

8 Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. Reasoning with conditional
probabilities and joint distributions in Coq. Computer Software, 37(3):79–95, 2020. Japan
Society for Software Science and Technology. doi:10.11309/jssst.37.3_79.

9 Reynald Affeldt, Manabu Hagiwara, and Jonas Sénizergues. Formalization of Shannon’s
theorems. J. Autom. Reason., 53(1):63–103, 2014.

10 Reynald Affeldt and Zachary Stone. A comprehensive overview of the Lebesgue differentiation
theorem in Coq. In 15th International Conference on Interactive Theorem Proving (ITP
2024), September 9–14, 2024, Tbilisi, Georgia, volume 309 of LIPIcs, pages 5:1–5:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ITP.2024.5.

11 Jeremy Avigad, Johannes Hölzl, and Luke Serafin. A formally verified proof of the central
limit theorem. J. Autom. Reason., 59(4):389–423, 2017. doi:10.1007/s10817-017-9404-x.

12 Anne Baanen. Use and abuse of instance parameters in the Lean mathematical library. In
13th International Conference on Interactive Theorem Proving (ITP 2022), August 7–10, 2022,
Haifa, Israel, volume 237 of LIPIcs, pages 4:1–4:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPICS.ITP.2022.4.

13 Frédéric Besson, David Cachera, Thomas P. Jensen, and David Pichardie. Certified static
analysis by abstract interpretation. In Foundations of Security Analysis and Design V (FOSAD
2007/2008/2009), Tutorial Lectures, volume 5705 of Lecture Notes in Computer Science, pages
223–257. Springer, 2009. doi:10.1007/978-3-642-03829-7_8.

14 Sylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Coquelicot: A user-friendly
library of real analysis for Coq. Math. Comput. Sci., 9(1):41–62, 2015. doi:10.1007/
S11786-014-0181-1.

15 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

16 Matteo Capucci. On quantifiers for quantitative reasoning, 2025. URL: https://arxiv.org/
abs/2406.04936, arXiv:2406.04936.

ITP 2025

https://github.com/math-comp/analysis
https://github.com/math-comp/analysis/pull/1645
https://github.com/math-comp/analysis/pull/1645
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.1007/s10817-023-09671-5
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1007/978-3-030-53518-6_2
https://doi.org/10.1007/s10817-019-09538-8
https://doi.org/10.1007/s10817-019-09538-8
https://doi.org/10.11309/jssst.37.3_79
https://doi.org/10.4230/LIPICS.ITP.2024.5
https://doi.org/10.1007/s10817-017-9404-x
https://doi.org/10.4230/LIPICS.ITP.2022.4
https://doi.org/10.1007/978-3-642-03829-7_8
https://doi.org/10.1007/S11786-014-0181-1
https://doi.org/10.1007/S11786-014-0181-1
https://arxiv.org/abs/2406.04936
https://arxiv.org/abs/2406.04936
https://arxiv.org/abs/2406.04936

21:20 Formalizing concentration inequalities in Rocq: infrastructure and automation

17 Cyril Cohen. Pragmatic quotient types in Coq. In 4th International Conference on Interactive
Theorem Proving (ITP 2013), Rennes, France, July 22–26, 2013, volume 7998 of Lecture Notes
in Computer Science, pages 213–228. Springer, 2013. doi:10.1007/978-3-642-39634-2_17.

18 Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy builder: Algebraic hierarchies
made easy in Coq with Elpi (system description). In 5th International Conference on Formal
Structures for Computation and Deduction (FSCD 2020), June 29–July 6, 2020, Paris, France
(Virtual Conference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.FSCD.2020.34.

19 Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks. Journal of logic and
computation, 2(4):511–547, 1992.

20 Ieva Daukantas, Alessandro Bruni, and Carsten Schürmann. Trimming data sets: a verified
algorithm for robust mean estimation. In 23rd International Symposium on Principles and
Practice of Declarative Programming (PPDP 2021), Tallinn, Estonia, September 6–8, 2021,
pages 17:1–17:9. ACM, 2021. doi:10.1145/3479394.3479412.

21 The MathComp development team. Mathematical components. https://github.com/
math-comp/math-comp, 2005. Last stable version: 2.4.0 (2025).

22 Jean Dieudonné. Treatise On Analysis, volume II. Academic Press, 1976.

23 Sebastien Gouezel. Lp spaces. Archive of Formal Proofs, October 2016. https://isa-afp.
org/entries/Lp.html, Formal proof development.

24 Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti,
and Lars Birkedal. Asynchronous probabilistic couplings in higher-order separation logic. Proc.
ACM Program. Lang., 8(POPL):753–784, 2024. doi:10.1145/3632868.

25 InfoTheo. InfoTheo: A Coq formalization of information theory and linear error-correcting
codes. https://github.com/affeldt-aist/infotheo, 2025. Authors: Reynald Affeldt, Man-
abu Hagiwara, Jonas Sénizergues, Jacques Garrigue, Kazuhiko Sakaguchi, Taku Asai, Takafumi
Saikawa, Naruomi Obata, and Alessando Bruni. Last stable release: 0.9.3 (2025).

26 Yoshihiro Ishiguro and Reynald Affeldt. The Radon-Nikodým theorem and the Lebesgue-
Stieltjes measure in Coq. Computer Software, 41(2):41–59, 2024. Japan Society for Software
Science and Technology. doi:10.11309/jssst.41.2_41.

27 Emin Karayel and Yong Kiam Tan. Concentration inequalities. Archive of Formal Proofs,
November 2023. https://isa-afp.org/entries/Concentration_Inequalities.html, For-
mal proof development.

28 Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, Jan 2021. doi:
10.5281/zenodo.4457887.

29 Filip Markovic, Pierre Roux, Sergey Bozhko, Alessandro V. Papadopoulos, and Björn B.
Brandenburg. CTA: A correlation-tolerant analysis of the deadline-failure probability of
dependent tasks. In IEEE Real-Time Systems Symposium (RTSS 2023), Taipei, Taiwan,
December 5–8, 2023, pages 317–330. IEEE, 2023. doi:10.1109/RTSS59052.2023.00035.

30 Jairo Miguel Marulanda-Giraldo, Ekaterina Komendantskaya, Alessandro Bruni, Reynald
Affeldt, Matteo Capucci, and Enrico Marchioni. Quantifiers for differentiable logics in Rocq
(extended abstract). In 8th International Symposium on AI Verification (SAIV 2025), Zagreb,
Croatia, July 21–22, 2025, Jul 2025.

31 Mathlib 4. File MeasureTheory/Function/LpSpace/Basic.lean. url, Jun 2025.

32 Guillaume Melquiond. Proving bounds on real-valued functions with computations. In 4th
International Joint Conference on Automated Reasoning (IJCAR 2008), Sydney, Australia,
August 12–15, 2008, volume 5195 of Lecture Notes in Computer Science, pages 2–17. Springer,
2008. doi:10.1007/978-3-540-71070-7_2.

https://doi.org/10.1007/978-3-642-39634-2_17
https://doi.org/10.4230/LIPIcs.FSCD.2020.34
https://doi.org/10.1145/3479394.3479412
https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp
https://isa-afp.org/entries/Lp.html
https://isa-afp.org/entries/Lp.html
https://doi.org/10.1145/3632868
https://github.com/affeldt-aist/infotheo
https://doi.org/10.11309/jssst.41.2_41
https://isa-afp.org/entries/Concentration_Inequalities.html
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.1109/RTSS59052.2023.00035
https://github.com/leanprover-community/mathlib4/blob/f3731eaabfa91f8610f09b48be38213d6c16d171/Mathlib/MeasureTheory/Function/LpSpace/Basic.lean#L87
https://doi.org/10.1007/978-3-540-71070-7_2

R. Affeldt, A. Bruni, C. Cohen, P. Roux, T. Saikawa 21:21

33 Guillaume Melquiond, Érik Martin-Dorel, Pierre Roux, and Thomas Sibut-Pinote. CoqInterval.
https://coqinterval.gitlabpages.inria.fr/, 2025. Since 2008. Version 4.11.1.

34 Michael Mitzenmacher and Eli Upfal. Probability and Computing—Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

35 Samir Rajani. Applications of Chernoff bounds. http://math.uchicago.edu/~may/REU2019/
REUPapers/Rajani.pdf, 2019. The University of Chicago Mathematics REU 2019.

36 Sho Sonoda, Kazumi Kasaura, Yuma Mizuno, Kei Tsukamoto, and Naoto Onda. Lean
formalization of generalization error bound by Rademacher complexity, 2025. URL: https:
//arxiv.org/abs/2503.19605, arXiv:2503.19605.

37 Philip B. Stark. Risk-limiting postelection audits: conservative P-values from common
probability inequalities. IEEE Trans. Inf. Forensics Secur., 4(4):1005–1014, 2009. doi:
10.1109/TIFS.2009.2034190.

38 M. H. Stone. Postulates for the barycentric calculus. Annali di Matematica Pura ed Applicata,
29:25–30, 1949.

39 Joseph Tassarotti. A probability theory library for the Coq theorem prover. https://github.
com/jtassarotti/coq-proba, 2023. Since 2020.

40 The Coq Development Team. Automatic solvers and programmable tactics, 2024. Chapter
in [35].

41 The Coq Development Team. The SSReflect proof language, 2024. Chapter in [35].

42 The Coq Development Team. The Coq reference manual. https://rocq-prover.org/doc/
V8.20.1/refman/index.html, 2024. Release 8.20.1.

43 The FormalML development team. FormalML: Formalization of machine learning theory with
applications to program synthesis. https://github.com/IBM/FormalML, 2025. Since 2019.

44 The mathlib Community. The lean mathematical library. In 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2020), New Orleans, LA, USA, January
20–21, 2020, pages 367–381. ACM, 2020. doi:10.1145/3372885.3373824.

45 Koundinya Vajjha, Avraham Shinnar, Barry M. Trager, Vasily Pestun, and Nathan Fulton.
CertRL: formalizing convergence proofs for value and policy iteration in Coq. In 10th ACM
SIGPLAN International Conference on Certified Programs and Proofs (CPP 2021), Virtual
Event, Denmark, January 17–19, 2021, pages 18–31. ACM, 2021. doi:10.1145/3437992.
3439927.

46 Koundinya Vajjha, Barry M. Trager, Avraham Shinnar, and Vasily Pestun. Formalization of a
stochastic approximation theorem. In 13th International Conference on Interactive Theorem
Proving (ITP 2022), August 7–10, 2022, Haifa, Israel, volume 237 of LIPIcs, pages 31:1–31:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ITP.2022.31.

47 Rosalind Cecily Young. The algebra of many-valued quantities. Mathematische Annalen,
104(1):260–290, 1931.

ITP 2025

https://coqinterval.gitlabpages.inria.fr/
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf
https://arxiv.org/abs/2503.19605
https://arxiv.org/abs/2503.19605
https://arxiv.org/abs/2503.19605
https://doi.org/10.1109/TIFS.2009.2034190
https://doi.org/10.1109/TIFS.2009.2034190
https://github.com/jtassarotti/coq-proba
https://github.com/jtassarotti/coq-proba
https://rocq-prover.org/doc/V8.20.1/refman/index.html
https://rocq-prover.org/doc/V8.20.1/refman/index.html
https://github.com/IBM/FormalML
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.1145/3437992.3439927
https://doi.org/10.4230/LIPICS.ITP.2022.31

	1 Introduction
	2 Automation for numeric interval inference
	2.1 Interval structure
	2.2 Canonical instances
	2.3 Hints
	2.4 Application to convexity

	3 Background: measure theory in MathComp-Analysis
	4 Formalization of Lp spaces
	4.1 The essential supremum, an adjunction
	4.2 Lp and Lp spaces
	4.3 Equiping Lp spaces with a seminorm
	4.3.1 Extension of the MathComp hierarchy of mathematical structures
	4.3.2 Minkowski's inequality

	5 Probability theory with MathComp-Analysis
	5.1 Basic definitions of probability theory
	5.2 Basic lemmas of probability theory
	5.3 The power measure

	6 Application: Formalization of a sampling theorem
	6.1 Bernoulli trial
	6.2 Proof of the sampling theorem
	6.2.1 Proving analytical arguments using MathComp-Analysis and CoqInterval

	7 Related work
	8 Conclusions
	References

