Stateful Protocol Verification in AlF-w, a
Tutorial

Alessandro Bruni
joint work with Sebastian Médersheim

material available at http://alessandrobruni.name

LAMAS SING 2016

http://alessandrobruni.name

y{113311117%

N

111

Roadmap

Verifying Security Protocols
Needham Schroder

Stateful Verification
Examples

Translation into Horn Clauses

Conclusions

Importance of Security Protocols

security protocols run the internet, banking, and now even more of
our interconnected phisical world (ie smart homes, cars, devices)
without them we would be vulnerable to remote attackers

Examples

Need to Verify Security Protocols

> Designing and implementing secure protocols is hard and
prone to subtle mistakes

Need to Verify Security Protocols

> Designing and implementing secure protocols is hard and
prone to subtle mistakes
» Example:

» Needham-Schroder session key establishment, proposed in 1978
» man-in-the-middle attack found by Lowe in 1995

Need to Verify Security Protocols

> Designing and implementing secure protocols is hard and
prone to subtle mistakes
» Example:

» Needham-Schroder session key establishment, proposed in 1978
» man-in-the-middle attack found by Lowe in 1995
» verified using BAN logic (also broken)

Need to Verify Security Protocols

> Designing and implementing secure protocols is hard and
prone to subtle mistakes
» Example:
» Needham-Schroder session key establishment, proposed in 1978
» man-in-the-middle attack found by Lowe in 1995
» verified using BAN logic (also broken)
» Morale: design mistakes can go unoticed for years, formal
reasoning can help to discover them

Need to Verify Security Protocols

> Designing and implementing secure protocols is hard and
prone to subtle mistakes
» Example:
» Needham-Schroder session key establishment, proposed in 1978
» man-in-the-middle attack found by Lowe in 1995
» verified using BAN logic (also broken)
» Morale: design mistakes can go unoticed for years, formal
reasoning can help to discover them

» Two main formal approaches:

» symbolic reasoning (Dolev-Yao)
» computational reasoning

Dolev-Yao representation of security protocols

» Security primitives as black-boxes

» Symbolic representation of crypto operations:
senc(M, K), sdec(C, K), aenc(M, Pk), adec(C, Sk), pk(A), sk(A),
sign(M, Sk), check(S, Pk), . ..
» Equational theory (=¢):
sdec(senc(M, K),K) =g M,
adec(aenc(M, pk(A)), sk(A)) =g M,
check(sign(M, Sk), pk(Sk)) =g ok
all other behaviours are impossible.

» Protocol represented by inference rules: given necessary inputs,
the expected outputs are produced

» Attacker controls the channel:
can construct, inject, delete and eavesdrop messages

Dolev-Yao representation of security protocols (2)

Interesting properties

> secrecy: a certain piece of information is not derivable given
the rules

» authentication: the information exchanged within the protocol
is authentic

» no single definition: authentic source, freshness, recentness,
correspondences

» indistinguishability: the attacker cannot distinghis between
two sessions of the protocol

> e.g.: voting systems

Dolev-Yao representation of security protocols (3)

Advantages

» Simple symbolic representation
» Good for deductive reasoning

» Automatic tool support
ProVerif, SPASS, OFMC, SATMC, AlF-w and many others

Dolev-Yao representation of security protocols (3)

Advantages

» Simple symbolic representation
» Good for deductive reasoning

» Automatic tool support
ProVerif, SPASS, OFMC, SATMC, AlF-w and many others

Disadvantages

» Misses some potential problems:
e.g.: possible to find hash collisions, known-plaintext attacks,
type-flaw attacks etc.

Dolev-Yao representation of security protocols (3)
Advantages

» Simple symbolic representation
» Good for deductive reasoning

» Automatic tool support
ProVerif, SPASS, OFMC, SATMC, AlF-w and many others

Disadvantages

» Misses some potential problems:
e.g.: possible to find hash collisions, known-plaintext attacks,
type-flaw attacks etc.

» Probabilistic crypto out of reach
fashionable example: blockchain

Dolev-Yao representation of security protocols (3)
Advantages

» Simple symbolic representation
» Good for deductive reasoning

» Automatic tool support
ProVerif, SPASS, OFMC, SATMC, AlF-w and many others

Disadvantages

» Misses some potential problems:
e.g.: possible to find hash collisions, known-plaintext attacks,
type-flaw attacks etc.

» Probabilistic crypto out of reach
fashionable example: blockchain

» Undecidable in general:
fresh values, unbounded sessions, unbounded agents, undecidable
equational theories

Outline

Needham Schroder

Needham—Schroder, our Drosophila

Protocol:

A— B :{NA, A}pk(B) (].)
B — A :{Na, Ng}px(a) (2)
A— B :{NB}pk(B) (3)

[AIF-w model]

Needham—Schroder, our Drosophila

Protocol:
A— B :{NAaA}pk(B)

B — A :{Na, N5} pk(a)
A— B :{NB}pk(B)

[AlIF-w model

(1)

(3)

Deduction rules:

aenc(pair(Na, A), pk(B)) (1)

aenc(pair(Na, A), pk(B))

aenc(pair(Na, Ng), pk(A)) (2)

k(
aenc(pair(Na, Ng), pk(B))

aenc(Ng, pk(A)) (3)

Needham—Schroder—Lowe (fixed)

Protocol:
A— B :{NAaA}pk(B)

B — A :{Na, N5} pk(a)
A— B :{NB}pk(B)

[AIF-w model]

(1)

(3)

Attack trace:

A= 1 {Na, A} oy

I — B :{Na, A} ()
B — 1 :{Na, Ng} ()
I = A {Na, Ng}pi(a)
A= 1 {Ng} o)

I — B :{Ng}ps)

Needham—Schroder—Lowe (fixed)

Protocol:

A — B {Na, A} () (1)
B — A:{Na,Ng, B} pk(a) (2)
A — B :{Ng} () (3)

[AIF-w model]

Outline

Stateful Verification

Motivation for AlF-w
Horn-clause representation of security protocols
» successful verification method (e.g. ProVerif, SPASS)
> abstraction of state, sessions and freshness

» problem: hard to verify systems with state, e.g. key revocation
protocols, TPM, timestamps, databases (e.g. web shops)...

Motivation for AlF-w

Horn-clause representation of security protocols
» successful verification method (e.g. ProVerif, SPASS)
> abstraction of state, sessions and freshness
» problem: hard to verify systems with state, e.g. key revocation
protocols, TPM, timestamps, databases (e.g. web shops)...

Allowing for stateful protocols without destroying the benefits of
the ProVerif method

» AIF, StatVerif, SetPi: annotate the usual predicates (e.g. i(-))
with terms representing the current state.

» However, the state information in all the stateful appraoches
must be limited to a fixed size for termination.
For StatVerif and AIF this in particular means a limitation to
a fixed number of agents (but unbounded sessions)

Motivation for AlF-w
Horn-clause representation of security protocols
» successful verification method (e.g. ProVerif, SPASS)
> abstraction of state, sessions and freshness

» problem: hard to verify systems with state, e.g. key revocation
protocols, TPM, timestamps, databases (e.g. web shops)...
Allowing for stateful protocols without destroying the benefits of
the ProVerif method
» AIF, StatVerif, SetPi: annotate the usual predicates (e.g. i(-))
with terms representing the current state.
» However, the state information in all the stateful appraoches
must be limited to a fixed size for termination.
For StatVerif and AIF this in particular means a limitation to
a fixed number of agents (but unbounded sessions)

Research question:

How can we verify protocols with unbounded principals, each with
their own persistent state?

Contributions

v

A language, AlF-w, with support for the verification of
stateful protocols with unbounded principals
» state represented by countably infinite sets (databases) indexed
into finite families

v

Soundness proof of our translation

v

Implementation:
» translator from AIF-w into Horn clauses, ProVerif and SPASS
used as solvers.

Case studies

v

Set-Membership Abstraction: Key Ideas

» Organize data into countable families of sets
(data-bases), indexed by agent names.
Example: user a has a set ring(a) of current keys, registered
at the key server s;, either in valid(sy, a) or in revoked(sy, a).

Set-Membership Abstraction: Key Ideas

» Organize data into countable families of sets
(data-bases), indexed by agent names.
Example: user a has a set ring(a) of current keys, registered
at the key server s;, either in valid(sy, a) or in revoked(sy, a).

» Disjointness assumption (for a fixed representation).
All sets of the same family are pairwise disjoint.
E.g. VA B € User . A# B = ring(A) N ring(B) = 0.
Violations of the assumption constitute an attack.

Set-Membership Abstraction: Key Ideas

» Organize data into countable families of sets
(data-bases), indexed by agent names.
Example: user a has a set ring(a) of current keys, registered
at the key server s;, either in valid(sy, a) or in revoked(sy, a).

» Disjointness assumption (for a fixed representation).
All sets of the same family are pairwise disjoint.
E.g. VA B € User . A# B = ring(A) N ring(B) = 0.
Violations of the assumption constitute an attack.

» Annotate the current state of an object with a term.
Given the ordering (ring, valid, revoked), a key pk satisfying
only pk € valid(s1, a) is annotated by (0, valid(s1, a), 0)

Set-Membership Abstraction: Key Ideas

» Organize data into countable families of sets
(data-bases), indexed by agent names.
Example: user a has a set ring(a) of current keys, registered
at the key server s;, either in valid(sy, a) or in revoked(sy, a).

» Disjointness assumption (for a fixed representation).
All sets of the same family are pairwise disjoint.
E.g. VA, B € User. A# B = ring(A)Nring(B) = 0.
Violations of the assumption constitute an attack.

» Annotate the current state of an object with a term.
Given the ordering (ring, valid, revoked), a key pk satisfying
only pk € valid(s1, a) is annotated by (0, valid(s1, a), 0)

» Term implications: representing set-membership changes
s t

If pk@ (0, valid(si, a),0) — pk@ (0,0, revoked(sy, a)),
then for every context C[-] where C[s] holds, also C[t] holds.

Outline

Examples

Hello World: a Hardware Security Module

» Hardware token, generates a secret s

» Reveals either the left projection /eft(s) or the right projection
right(s)

» Attacker should not learn both left(s) and right(s) at the
same time.

reveal reveal
left(s) right(s)

[AIF-w model

AIF key revocation protocol [AlF-w model]
Types:

Honest = {a,b,c}; Dishon = {i};
User = Honest U Dishon; Server = {si,};

Sets:

ring(User), valid(Server, User), revoked(Server, User);

AIF key revocation protocol [AlF-w model]
Types:

Honest = {a,b,c}; Dishon = {i};
User = Honest U Dishon; Server = {si,5};

Sets:
ring(User), valid(Server, User), revoked(Server, User);

Rules:

registerOutOfBand(U : User,S : Server) =
HPKl= PK € ring(U) - PK € valid(S, U) - i(PK)

AIF key revocation protocol [AlF-w model]
Types:

Honest = {a,b,c}; Dishon = {i};
User = Honest U Dishon; Server = {si,};
Sets:
ring(User), valid(Server, User), revoked(Server, User);
Rules:

registerOutOfBand(U : User,S : Server) =
HPKl= PK € ring(U) - PK € valid(S, U) - i(PK)

updateKey(U : User, S : Server, PK : val, NPK : val) =
i(signiny(pr) (S, U, NPK)) - PK € valid(S, U):-
NPK ¢ valid(_,-) - NPK ¢ revoked(_, -)
= PK € revoked(S, U) - NPK € valid(S, U) -i(inv(PK))

AIF key revocation protocol [AlF-w model]
Types:

Honest = {a,b,c}; Dishon = {i};
User = Honest U Dishon; Server = {si,};
Sets:
ring(User), valid(Server, User), revoked(Server, User);
Rules:

registerOutOfBand(U : User,S : Server) =
HPKl= PK € ring(U) - PK € valid(S, U) - i(PK)

updateKey(U : User, S : Server, PK : val, NPK : val) =
i(signiny(pr) (S, U, NPK)) - PK € valid(S, U):-
NPK ¢ valid(_,-) - NPK ¢ revoked(_, -)
= PK € revoked(S, U) - NPK € valid(S, U) -i(inv(PK))
attackDef (U : Honest, S : Server, PK : val) =
i(inv(PK)) - PK € valid(S, U) = attack.

AIF-w key revocation protocol [AlF-w model]
Types:

Honest = {a,b,c,...}; Dishon = {i,...};
User = Honest U Dishon; Server = {s1,%,...};
Sets:
ring(User), valid(Server, User), revoked(Server, User);
Rules:

registerOutOfBand(U : User,S : Server) =
HPKl= PK € ring(U) - PK € valid(S, U) - i(PK)

updateKey(U : User, S : Server, PK : val, NPK : val) =
i(signiny(pr) (S, U, NPK)) - PK € valid(S, U):-
NPK ¢ valid(_,-) - NPK ¢ revoked(_, -)
= PK € revoked(S, U) - NPK € valid(S, U) -i(inv(PK))
attackDef (U : Honest, S : Server, PK : val) =
i(inv(PK)) - PK € valid(S, U) = attack.

updateKey(U : User,S : Server, PK : val, NPK : val) =
[...]- PK € valid(S,U) - NPK ¢ valid(_,-) - NPK ¢ revoked(_,)
= PK € revoked(S, U) - NPK € valid(S,U) [...]

Before: pk@(0, valid(s1, a),0), npk@(ring(a),0,0)
ring(a) valid(sy, a)

g

revoked(si, a)

After: pk@©(0,0, revoked(s1, a)), npk@(ring(a), valid(si, a), 0)

updateKey(si, a)

ring(User) valid(Server, User)
b i ... (s1,a) (s2,@) (s1,b) - ..

revoked(Server, User)
(s1,a) (s2,a) (s1,b) - ..

pk@(0, valid(s1, a),0) —» pk©@(0.0, revoked(s;,a))
npk@(ring(a),0,0 — npk@(ring(a), valid(s1, a), 0)

updateKey(si, a)

ring(User) valid(Server, User)
b i ... (s1,a) (s2,@) (s1,b) - ..

revoked(Server, User)
(s1,a) (s2,a) (s1,b) - ..

pk@©(0, valid(s,a).0) — pk®(0,0, revoked(s1, a))
npk©(ring(a), 0, 0) —» npk@(ring(a), valid(sy, a), 0)

Outline

Translation into Horn Clauses

Inadmissible (stupid) rules

» Rules violating disjointness on RHS:

r(X :val) = p(X) = X € s1(a)

Inadmissible (stupid) rules

» Rules violating disjointness on RHS:
r(X :val) = p(X) = X € s1(a)
Can be compiled into:

rn(X:val) =p(X)- X ¢s1(.) = Xesi(a)
rn(X:val,A: T) = p(X) - X € s1(A) = attack

Inadmissible (stupid) rules

» Rules violating disjointness on RHS:
r(X :val) = p(X) = X € s1(a)
Can be compiled into:

rn(X:val) =p(X)- X ¢s1(.) = Xesi(a)
rn(X:val,A: T) = p(X) - X € s1(A) = attack

» Rules violating disjointness on LHS:

r(A: T,B: T,X:val)=p(X)-Xesi(A)-Xesi(B)=...

only executes iff A = B.

Translating updateKey(U, S) into Horn clauses

1. Compute equivalence class

i(Sigﬁinv(PK)(S7 v, NPK)) :

PK € valid(S, U) - PK
NPK ¢ valid(_,_) - NPK ¢ revoked(_,_) NPK
=

PK € revoked(S, U) - PK
NPK € valid(S, U)- NPK

i(inv(PK))

X1
X3

X1
X3

EquivalenceClass

valid(S, U) X2

0 0

0 revoked(S, U)
valid(S, U) 0

Translating updateKey(U, S) into Horn clauses

1. Compute equivalence class
2. Substitute values with their class annotation

i(S1gMin((1, valia(5.0),x2)) (8, U5(X3, 0, 0))) - EquivalenceClass

PK € valid(S, U) - PK X1 valid(S, U) Xo

NPK ¢ valid(_,) - NPK ¢ revoked(-,-) NPK X3 0 0

=

PK € revoked(S, U) - PK X 0 revoked(S, U)
NPK € valid(S, U)- NPK X5 valid(S,U) 0

i(inv((X1,0, revoked(S, U))))

Translating updateKey(U, S) into Horn clauses

1. Compute equivalence class

2. Substitute values with their class annotation

3. Term implication predicates (state transitions)

i(Signinv(<X1,valid(S,U),X2>)(S7U7<X37 0,0)))-

PK € valid(S, U)- PK
NPK ¢ valid(_,) - NPK ¢ revoked(-,-) NPK
=

PK € revoked(S, U) - PK
NPK € valid(S, U)- NPK

i(inv({X1,0, revoked(S, U))))
(Xi, valid(S, U),0) —» (X1,0, revoked(S, U))
(X3,0,0) — (X3, valid(S, U),0)

X1
X3

X1
X3

EquivalenceClass

valid(S, U)
0

0
valid(S, U)

Xo
0

revoked(S, U)
0

Translating updateKey(U, S) into Horn clauses

. Compute equivalence class

. Substitute values with their class annotation

1
2
3. Term implication predicates (state transitions)
4

. State transition rules

i(Signinv(<X1,valid(S,U),X2>)(S7U7<X37 0,0)))-

PK € valid(S, U)- PK
NPK ¢ valid(_,) - NPK ¢ revoked(-,-) NPK
=

PK € revoked(S, U) - PK
NPK € valid(S, U)- NPK

i(inv({X1,0, revoked(S, U))))
(X1, valid(S, U),0) — (X1, 0, revoked(S, U))
(X3,0,0) — (X3, valid(S, U),0)

X3

X1
X3

EquivalenceClass

valid(S, U)
0

0
valid(S, U)

Xo
0

revoked(S, U)
0

VC[]. (Xs5,0,0) — (Xs, valid(S, U),0) - C[(Xs,0,0)] => C[(Xs, valid(S, U),0)]

Translating updateKey(U, S) into Horn clauses

1. Compute equivalence class

2. Substitute values with their class annotation

3. Term implication predicates (state transitions)

4. State transition rules

5. Quantify agents over their types

usr(U) - srv(S)

i(Signinv(<X1,valid(S,U),X2>)(S7U7<X37 0,0)))- EquivalenceClass

PK € valid(S, U) - PK X1 valid(S, U) Xo
NPK ¢ valid(_,_) - NPK & revoked(_,) NPK X 0 0
=

PK € revoked(S, U) - PK Xi 0 revoked(S, U)
NPK € valid(S, U)- NPK Xs valid(S, U) 0

i(inv({X1,0, revoked(S, U))))
(X1, valid(S, U),0) — (X1, 0, revoked(S, U))
(X3,0,0) — (X3, valid(S, U),0)

VC[]. (Xs5,0,0) — (Xs, valid(S, U),0) - C[(Xs,0,0)] => C[(Xs, valid(S, U),0)]

Outline

Conclusions

Experimental Results: Key Server Example

Number of Agents Backend
Honest Dishon Server | ProVerif SPASS
AlF 1 1 1 0.025s 0.891s
2 1 1 0.135s 324.696s
2 2 1 0.418s Timeout
3 3 1 2.057s Timeout
AlF-w w w w 0.034s 0.941s

Conclusions

We extend a successful method in a successful way:

» The extension allows verification of stateful protocols with
unbounded number of agents

» AlF-w: clear specification language that allows exactly what
the method can handle

» Soundness of the analysis for all AlF-w specifications

» Implementation using ProVerif and SPASS

» Case-studies:

» PKCS11, SeVeCom, FuturEID, CANAuth

	Verifying Security Protocols
	Needham Schröder
	Stateful Verification
	Examples
	Translation into Horn Clauses
	Conclusions

