Selene in Celf: Formalising Voting
Protocols in Linear Logic

Alessandro Bruni
(joint work with Carsten Schiirmann)

brun®@itu.dk

University of Luxembourg

wids
'..%. o
v

ol ol Gyl sl

Qatar National Research Fund

Member of Qutar Foundation s oo gho5e

DemTech
IT UNIVERSITY OF COPENHAGEN

Democracy, Technology & Trust

B University of Luxembourg 1 /42

Abstract

Designing security protocols is a task notoriously known
to be prone to mistakes. Voting protocols in particular
have subtle and often contrasting properties like vote
verifiability, receipt-freenes and coercion resistance,
hence their precise characterisation is often complex to
understand. In this talk, we aim to show how the
foundational framework of linear logic can help to
produce clear specifications of complex protocols, using
the Selene internet voting protocol as a case in point.
The notions of coherence and concurrency built into the
linear logical framework Celf provide an initial check on
the protocol well-formedness, and more advanced
security properties can be expressed using dependent
types and the higher-order syntactic approach of Celf.

s University of Lixembourg 2 / 42

Internet Elections — Challenges

» Election Integrity

Universal Declaration of
» Ballot Secrecy Human Rights
> Transparency The will of the people shall be
> Security the basis of the authority of
» Coercibility government; this will shall be
> Receipts expressed in periodic and
genuine elections which shall
German Supreme Court be by universal and equal
Law permitting the use of suffrage and shall be held by
electronic election machines is secret vote or by equivalent
unconstitutional. free voting procedures.
[Senat 2 BvC 3/07] [Article 21.3]

University of Lixembourg 3 / 42

How to design a Voting Protocol

Requirements (highly country dependent)
» Requirements (country dependent)

v

Single Points of Failures

v

Operational protocols
Verifiability

v

Design of a voting protocol

v

Cryptographic techniques

v

Evidence production
Individual Verifiability
Universal Verifiability

v

v

University of Lixembourg 4 / 42

Designing a Protocol: Academia vs. Reality

“Problem solving is an art form not fully appreciated by some”

J;\-Q [Ms w-j\ ﬁ/ Q/VJ;?:‘-Q /W&
g 0

£

As proposed by As specified in As designed by %

the project sponsors the project request the senior analyst

W‘Kw ¢ Uity " A ¢, 7 g

N 3 lanr: = ?

-

NN XS) g

As produced by As installed at What the user t
the programmers the user’s site wanted

University of Lixembourg 5 / 42

The Norwegian Ballot Decryption Ceremony

University of Lixembourg 6 / 42

Zero Knowledge Proofs of Knowledge pfk, pfk’

c "B 9IAaDO g =

© 0@ /O unomagputetn 2300 x \

1 2300011xt

@ Gitun, e (US)

(¢

O ===

1 KRD-KOMM-VL / treningsvalg

> Code. Issues 0 [’ Pul requests 0

Branch: master ~

‘glassfish EE:230001 TS:1375448400016

0 contributors

252 lines (2451 sloc) 933 k8

1375448400016

Pull requests Issues ~ Gist

Wik 4-Puse | Graphs

treningsvalg / bulletin_230001.txt

A+ &

@Watch~ 7 wStar 1

Find file Copy path

b93da2d on 2 Aug 2013

Raw Blame Histoy I /S

ey

University of Luxembourg

7/ 42

The Selene E-voting Protocol

» Need to present?

Selene

The Selene E-voting Protocol

» Need to present!

Selene

The Selene E-voting Protocol

» Need to present!
» Due to Peter Ryan, Peter Rgnne, Vincenzo lovino

University of Lixembourg 8 / 42

The Selene E-voting Protocol

» Need to present!

» Due to Peter Ryan, Peter Rgnne, Vincenzo lovino
dear audience. . .:)

University of Lixembourg 8 / 42

The Selene E-voting Protocol

» Need to present!

» Due to Peter Ryan, Peter Rgnne, Vincenzo lovino
dear audience. . .:)

» Internet voting protocol designed low-coercion scenarios

University of Lixembourg 8 / 42

The Selene E-voting Protocol

» Need to present!

» Due to Peter Ryan, Peter Rgnne, Vincenzo lovino
dear audience. ..)

» Internet voting protocol designed low-coercion scenarios

Key ideas

1. votes are publicly posted on a bullettin board makes it
easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

University of Lixembourg 8 / 42

El-gamal cryptosystem

Gen: Select a subgroup G C Zj, of order ¢, and a generator g
of G. Choose x <E Zg. Reveal h = g*.

Enc: To encrypt a message m € (G, we choose r < Zy. The

ciphertext is then:

(¢,d) = (g",m-h").

Dec: To decrypt the ciphertext (¢, d), compute

University of Lixembourg § / 42

El-gamal homomorphisms:

Reencryption: (¢",m - h"), choose 7’ i Z,. Then

(gr-i-?“"m . hr+T’) =(g",m-h")- (gr', 1- hT') is a reencryption
of m.

e e

El-gamal homomorphisms:

Reencryption: (¢",m - h"), choose 1’ = Z,. Then

(g7t m A"y = (g",m-h") - (¢"',1- k") is a reencryption
of m.

Additive homomorphism Let:
(c1,dr) = (g™, g™ - b)) (ca,d2) = (g™, 9™ - h")

then
(c1-ca,dy-dp) = (g" "2, g™ ™ BT

computes the sum of my and msy under El-gamal using public
key h = g*.

e e e

El-gamal homomorphisms:

Reencryption: (¢",m - h"), choose 1’ < Zg. Then
(g7t m A"y = (g",m-h") - (¢"',1- k") is a reencryption

of m.

Additive homomorphism Let:
(c1,dr) = (g™, g™ -h") (e, da) = (9", 9™ - h")

then

(Cl 'Cz,dl . d2) — (gr1+r2’gm1+m2 . hr1+r2)
computes the sum of my and msy under El-gamal using public
key h = g*.
Note: if m; + my is not to big, it is possible to solve
efficiently the discrete logarithm of ¢™1*™2 to obtain the sum.

e e e

Pedersen commitment

Gen: Select a subgroup G C Zj, of order ¢, and a generator g
of G. Choose z < Z,. Reveal h = g¢*.

e e e

Pedersen commitment

Gen: Select a subgroup G C Zj, of order ¢, and a generator g
of G. Choose z < Zg. Reveal h = g*.

Commit: To commit to a message m € G, we choose
e Zg4. The commitment is then: ¢ = g™ - h" .

e e e

Pedersen commitment

Gen: Select a subgroup G C Zj, of order ¢, and a generator g
of G. Choose z < Zg. Reveal h = g*.

Commit: To commit to a message m € G, we choose
e Zg4. The commitment is then: ¢ = g™ - h" .

Open: To reveal the message m, the second component is
sent: d =g".

e e e

Pedersen commitment

Gen: Select a subgroup G C Z;, of order ¢, and a generator g
of G. Choose z < Zg. Reveal h = g*.

Commit: To commit to a message m € GG, we choose
r g Z4. The commitment is then: ¢ = g™ - h" .

Open: To reveal the message m, the second component is
sent: d =g".

Properties

Information theoretically hiding: given the commitment c,
any message m’ € G is equally likely, and in particular, having
the secret key x one can compute: r' = m_Tm/ +7r

4

e e e

Pedersen commitment

Gen: Select a subgroup G C Z;, of order ¢, and a generator g
of G. Choose z < Zg. Reveal h = g*.

Commit: To commit to a message m € GG, we choose
r g Z4. The commitment is then: ¢ = g™ - h" .

Open: To reveal the message m, the second component is
sent: d =g".

Properties

Information theoretically hiding: given the commitment c,
any message m’ € G is equally likely, and in particular, having
the secret key x one can compute: r' = m_Tm/ +7r
Computationally binding: finding two messages m and m/’
that open the commitment ¢ requires finding an r and ' s.t.
g™ -h" = g™ - k" then one can compute log,(h) = atliog

r—r!/ °

4

e e e

Overview

Actors

1. Election Authority (E'A)
Web Bulletin Board (W BB)
Mixnet (M)
Teller(s) (T)
Voters (V)

U S

e e ee— T

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

T e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

T e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

T e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

4. Votes v; are encrypted (ev;) and signed (s;) by Voters V;, and
published along

e e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

4. Votes v; are encrypted (ev;) and signed (s;) by Voters V;, and
published along

5. Encrypted tracking numbers and votes (e}, ev;) are shuffled by the
Mixnet, then published as (e, ev}), losing link to the originals;

e e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

4. Votes v; are encrypted (ev;) and signed (s;) by Voters V;, and
published along

5. Encrypted tracking numbers and votes (e}, ev;) are shuffled by the
Mixnet, then published as (e, ev}), losing link to the originals;

6. Votes ev; are decrypted by the Tellers, and published to the
Bulletin Board

e e

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

4. Votes v; are encrypted (ev;) and signed (s;) by Voters V;, and
published along

5. Encrypted tracking numbers and votes (e}, ev;) are shuffled by the
Mixnet, then published as (e, ev}), losing link to the originals;

6. Votes ev; are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

e e

SEEE

msc Generation of tracker numbers

WBB EA
Bulletin board | |Election authorityl

Vi € {1..maz}.
choose n;

ei = {nitnr

m; = (ny, e, 2kp(eq))

mi

post m;

University of Luxembourg

14 / 42

SEEE

msc Mixing tracker numbers, proxy reencryption

W BB M T
|Bulletin boardl | Mixnet | | Teller |
Vi € {1..max}.

read (n;, e;, zkp;)

€;

choose ™ € Spax
Vi € {1..max}.
6; = 67(@-) X {l}hT

!
€
!
€
n; = decrypt €}
choose r;
¢ =h"n;
! /
/ m; = (61-, CZ>
m!

i

post (pki, e}, ci)
| |

University of Luxembourg

15 / 42

msc Voting

Vi WBB
| Voter | |Bulletin board

evi = {vi}phr
s; = sign(ev;, sk;)
7= (ev;, s;)

m;

read (pk;, €], ¢;)
post (pki, e}, ¢, evi, s;)

S NN —

e ey

SEEE

msc Mixing ballots

WBB M
|Bulletin boardl | Mixnet |

Vi € {1..maa’}
read (pk;, €}, c;, ev;, s;)
i = (el ews)

mn
m;

choose 0 € Spaar
Vi € {1.max'}.
62'/= iy X {1}ne
ev; = evy() X {1}ny

m" = (e ev))

D

post (e, ev))

University of Luxembourg

17 / 42

msc Decryption

WBB T
|Bulletin boardl | Teller

Vi € {1..maz'}.
read (e, ev])
m? = (e, ev))

e

(di, zkp;) = decrypt e/
(vi, zkp}) = decrypt ev]
m® = (d;, zkp;, vi, zkp})

®

post (e7, evy, d;, zkp;, vi, zkp}) |

*—

e e

msc Reveal and Check

WBB

Vi

T

3
Bulletin boardl | Voter | | Teller

/
read (pk;, €}, c;, ev;, s;) |

(ki ci)

(pki, bi)

| d = decrypt el(b;, ¢;)

d

read (¢”,ev’, d, zkp,v, zkp') |

v

SEEE

University of Luxembourg

19 / 42

Tools

Proof Assistants

» Coq [Herberlin et al]
» Certicrypt, Easycrypt [Barthe et al|
» CryptoAgda [Gustafsson, Pouillard]
» Maude, Maude-NPA [Meseguer et al]
» Tamarin [Meier, et all

Protocol Verifiers

» Applied Pi [Abadi et al]
» ProVerif [Blanchet et al]
> SetPlI [Bruni, Modersheim]
» NRL Analyzer [Meadows]

Ui e e i 02

Table of Contents

® Selene

SEEE

Table of Contents

© Linear Logic

Linear Logic

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.”

» Assumptions may be used
any number of times.

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of food.

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.
» Use linear implication, A — {B}.
» A —o {B} =~ "“consume resource A to produce B."

T E——r

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.
» Use linear implication, A — {B}.
» A —o {B} =~ "“consume resource A to produce B."

voting-auth-card —o { blank-ballot}

“If | give an authorization card, then | get a blank ballot.”
University of Luxembourg 24 / 42

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.
» Use linear implication, A — {B}.
» A —o {B} =~ "“consume resource A to produce B."

voting-auth-card —o { blank-ballot}

“If | give an authorization card, then | get a blank ballot.”
University of Luxembourg 24 / 42

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.
» Use linear implication, A — {B}.
» A —o {B} =~ "“consume resource A to produce B."

voting-auth-card —o { blank-ballot}

“If | give an authorization card, then | get a blank ballot.”
University of Luxembourg 24 / 42

What is linear logic?

Traditional Logic Linear Logic
“Truth is free.” “Truth is a consumable resource.”
» Assumptions may be used » Assumptions must be
any number of times. used exactly once.
» The logic of facts. » The logic of feed voting.

Let's specify a voter check-in process:
» Consume an authorization card to prevent multiple
check-ins.
» Use linear implication, A — {B}.
» A —o {B} =~ "“consume resource A to produce B."

voting-auth-card —o { blank-ballot}

“If | give an authorization card, then | get a blank ballot.”
University of Luxembourg 24 / 42

“May | please see your identification?”

voting-auth-card “and photo ID" —o {blank-ballot}
“If | give an auth. card and a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

T E———

“May | please see your identification?”

voting-auth-card “and photo ID" —o {blank-ballot}
“If | give an auth. card and a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A ® B.

» A® B =~ “both resources A and B"

T E———

“May | please see your identification?”

voting-auth-card ® photo-ID —o { blank-ballot}
“If | give an auth. card and a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A ® B.

» A® B =~ “both resources A and B"

T E———

“May | please see your identification?”

voting-auth-card ® photo-ID —o { blank-ballot}
“If | give an auth. card and a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A ® B.

» A® B =~ “both resources A and B"

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

T E———

“May | please see your identification?”

voting-auth-card ® photo-ID —o { blank-ballot}
“If | give an auth. card and a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A ® B.

» A® B =~ “both resources A and B"

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

T E———

“May | please see your identification?”

voting-auth-card ® | photo-ID —o { blank-ballot}
“If | give an auth. card and show a photo ID, then | get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A ® B.

» A® B =~ “both resources A and B"

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

T E———

Ensuring that the Card and ID Match

voting-auth-card ® | photo-ID —o { blank-ballot}
“If | give an auth. card and show a photo ID, then | get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

e e e Ty

Ensuring that the Card and ID Match

voting-auth-card ® | photo-ID —o { blank-ballot}
“If | give an auth. card and show a photo ID, then | get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, Vx.A.

» Quantified variables are not resources.

e e e Ty

Ensuring that the Card and ID Match

Vu. voting-auth-card(v) ® !photo-ID(v) —o { blank-ballot}
“If | give an auth. card and show a matching ID, then | get a ballo

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, Vx.A.

» Quantified variables are not resources.

e e e Ty

Ensuring that the Card and ID Match

voting-auth-card(V') ® !photo-ID(V') —o { blank-ballot}
“If | give an auth. card and show a matching ID, then | get a ballo

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, Vx.A.

» Quantified variables are not resources.

e e e Ty

Ensuring that the Card and ID Match

voting-auth-card(V') ® !photo-ID(V') —o { blank-ballot}
“If | give an auth. card and show a matching ID, then | get a ballo

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, Vx.A.

» Quantified variables are not resources.

Problem:
Doesn't ensure that the auth. card and ID are mine.

e e e Ty

Table of Contents

@ Celf, the Concurrent Logical Framework

Celf, the Concurrent Logical Framework

Celf
The

Concurrent Logical Framework

Substructural Logics

Ay A
——FFFFF hame
Bi,....B,

> In LLF order matters [Girard '89, Cervesato et al '96]
name: A1 ® - A, B ® --®B,
» In CLF order does not matter [Cervesato et al '02]

name: A1 ® - ® A, = {B1® - ®B,}

Celf, the Concurrent Logical Framework University of Luxembourg 29 / 42

Execution as Proof Search

» Proof search

send (vote O)

receive (return_code R)
corresponds to inhabitation of CLF types.
send (vote O) —o {receive (return_code R)}

» All terms are equal modulo interleavings
» No leftovers in the multi-set allowed
» Focusing [Andreoli '93, Chaudhuri '06, Miller '05]

Celf, the Concurrent Logical Framework University of Luxembourg 30/ 42

CLF — Types and Kinds

» LLF + concurrency monad [Harper et al 93]
» Types:

AB:=A—oB|llz: A B|A&B|T|{S}|P
P:=a|PN
S:=5®85y[1|3x:A S| A

» Kinds:
K :=type|llz: A. K

We write A — B for Ilz : A. B if z does not occur in B.

Celf, the Concurrent Logical Framework University of Luxembourg 31/ 42

CLF — Terms

Term syntax:

Nu=Xx. N | Az. N | (N, No) |) | {E} |
C|$|N1AN2|N1 N2|7T1N|7T2N Objects

E:=let{p}=NinE | M Expressions
M:o=M®DM,|1|[N,M]|N Monadic objects
pr=p1®pa| 1] x,p||x Patterns

Equality: «, 3, n and let-floating

let {p1} = Nyinlet {p2} = Noin £ =
let {pg} = N2 in let {pl} = N1 in B

Celf, the Concurrent Logical Framework University of Luxembourg 32 /42

Table of Contents

@ Case Study

Recall the Selene Protocol

Voting in seven easy steps

1. Election Authority produces a tracker number n; and its encryption
e; for each Voter i;

2. Mixnet shuffles the encrypted trackers e;, resulting in a
re-encryption e} that loses connection to n;;

3. Teller(s) decrypt e;s, assign them to Voters V; and generate
Pedersen commitments ¢;, then publish them to the Bulletin Board

4. Votes v; are encrypted (ev;) and signed (s;) by Voters V;, and
published along

5. Encrypted tracking numbers and votes (¢}, ev;) are shuffled by the
Mixnet, then published as (e}, ev}), losing link to the originals;

6. Votes ev; are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Case Study University of Luxembourg 34 /42

Voting and Checking

msc Voting
Vi WBB
| Voter | |Bulletin boardl

ev; = {vi}pkr
s; = sign(evy, sk;)

m{ = (evi, si)

msc Reveal and Check

WBB Vi

T

Bulletin boardl | Voter | | Teller |

(pki, bi)

/
read (pki, €}, ¢;, ev;, s;) |

(pki, i)

| d = decrypt el(b;, ¢;)

d

read (pki, €}, c;)
post (pk;, €}, c;, ev, s;)

read (", ev’, d, zkp, v, zkp') |

—— ——

v

University of Luxembourg

35/ 42

A Selene Voter in Celf

V : vote I PT WBB C —o
{ Exists r.
net (pk I) WBB (+ (elgamal (option C) PT r)
(sig (elgamal (option C) PT r) I)) *
(Pi M1. net PT (pk I) Ml — 7 randomness
Pi M2. net WBB (pk I) M2 — % trap door commitment
Pi V. eval (dec (construct M1 M2) I) V —
Pi V1. Pi V2. publish (+3 !V1 V2 !(+ V (option C))) —

{1}

e e e—

What can we prove?

Adequacy!

Theorem
There exists a bijection between valid traces of this protocol
and (canonical) objects of type

‘FN:...voteV; C; —...vote V, C;, — ... — {1}

» Election Authority (EA), Web Bulletin Board (WBB),
Mixnet (M) and Tellers (T) can be modeled similarly

» Celf allows us to experiment with such designs

» We characterize in Celf precisely the protocol that we
want, not more, not less

» Execution may require complex reasoning

Case Study University of Luxembourg 38 /42

Coherence!

» Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

» Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

e T e e

Coherence!

» Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

» Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

» Coherence ensures that the types of multiple processes
are dual to each other

Case Study University of Luxembourg 39 /42

Coherence!

» Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

» Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

» Coherence ensures that the types of multiple processes
are dual to each other

» i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

Case Study University of Luxembourg 39 /42

Coherence!

» Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

» Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

» Coherence ensures that the types of multiple processes
are dual to each other

» i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

» Good first sanity check on the protocol design

Case Study University of Luxembourg 39 /42

Coherence!

» Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

» Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

» Coherence ensures that the types of multiple processes
are dual to each other

» i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

» Good first sanity check on the protocol design

» In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,
Guttman 2013]

Case Study University of Luxembourg 39 /42

Demo timel!

Table of Contents

® Conclusion

Conclusion

Contributions

Framework perspective

» Logical frameworks support adequate encodings of
complex security protocols

» Coherence check on the protocol design

T ET——y

Contributions

Framework perspective

» Logical frameworks support adequate encodings of
complex security protocols

» Coherence check on the protocol design

T ET——y

Contributions

Framework perspective

» Logical frameworks support adequate encodings of
complex security protocols

» Coherence check on the protocol design

Model perspective
» First coherent formalisation of selene!

» Helped to clarify what messages are exchanged when,
what are the phases

T E——y

What we are missing?

Conclusion

What we are missing?

Framework perspective
» At the moment the framework lacks coinduction

» Impossible to construct indistinguishability
(bisimulation) proofs without

T E——y

What we are missing?

Framework perspective
» At the moment the framework lacks coinduction

» Impossible to construct indistinguishability
(bisimulation) proofs without

Model perspective
» Introducing Zero-knowledge proofs
» Express more security properties with dependent types

» Deriving real world implementations from the
generated processes

» Deriving models for other tools

e T e (s

	Introduction
	Selene
	Linear Logic
	Celf, the Concurrent Logical Framework
	Case Study
	Conclusion

