
Selene in Celf: Formalising Voting

Protocols in Linear Logic

Alessandro Bruni
(joint work with Carsten Schürmann)

brun@itu.dk

University of Luxembourg

University of Luxembourg 1 / 42

Abstract

Designing security protocols is a task notoriously known
to be prone to mistakes. Voting protocols in particular
have subtle and often contrasting properties like vote
verifiability, receipt-freenes and coercion resistance,
hence their precise characterisation is often complex to
understand. In this talk, we aim to show how the
foundational framework of linear logic can help to
produce clear specifications of complex protocols, using
the Selene internet voting protocol as a case in point.
The notions of coherence and concurrency built into the
linear logical framework Celf provide an initial check on
the protocol well-formedness, and more advanced
security properties can be expressed using dependent
types and the higher-order syntactic approach of Celf.

University of Luxembourg 2 / 42

Internet Elections — Challenges

I Election Integrity

I Ballot Secrecy

I Transparency

I Security

I Coercibility

I Receipts

German Supreme Court
Law permitting the use of
electronic election machines is
unconstitutional.

[Senat 2 BvC 3/07]

Universal Declaration of
Human Rights
The will of the people shall be
the basis of the authority of
government; this will shall be
expressed in periodic and
genuine elections which shall
be by universal and equal
suffrage and shall be held by
secret vote or by equivalent
free voting procedures.

[Article 21.3]

Introduction University of Luxembourg 3 / 42

How to design a Voting Protocol

Requirements (highly country dependent)

I Requirements (country dependent)

I Single Points of Failures

I Operational protocols

I Verifiability

Design of a voting protocol

I Cryptographic techniques

I Evidence production

I Individual Verifiability

I Universal Verifiability

Introduction University of Luxembourg 4 / 42

Designing a Protocol: Academia vs. Reality

Introduction University of Luxembourg 5 / 42

The Norwegian Ballot Decryption Ceremony

Introduction University of Luxembourg 6 / 42

Zero Knowledge Proofs of Knowledge pfk, pfk’

Introduction University of Luxembourg 7 / 42

The Selene E-voting Protocol

I Need to present?

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino

dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

The Selene E-voting Protocol

I Need to present!

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino

dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

The Selene E-voting Protocol

I Need to present!

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino

dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

The Selene E-voting Protocol

I Need to present!

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

The Selene E-voting Protocol

I Need to present!

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

The Selene E-voting Protocol

I Need to present!

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience. . . :)

I Internet voting protocol designed low-coercion scenarios

Key ideas
1. votes are publicly posted on a bullettin board makes it

easy to trust the result;

2. tracking receipts (tracker numbers) allow users to trust
that their vote has been cast,
individual verifiability

3. and to fake receipts for potential coercers.
receipt freeness

Selene University of Luxembourg 8 / 42

El-gamal cryptosystem

Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Enc: To encrypt a message m ∈ G, we choose r ←
R
Zq. The

ciphertext is then:

(c, d) = (gr,m · hr).

Dec: To decrypt the ciphertext (c, d), compute

m =
d

cx
.

Selene University of Luxembourg 9 / 42

El-gamal homomorphisms:

Reencryption: (gr,m · hr), choose r′ ←
R
Zq. Then

(gr+r′ ,m · hr+r′) = (gr,m · hr) · (gr′ , 1 · hr′) is a reencryption
of m.

Additive homomorphism Let:

(c1, d1) = (gr1 , gm1 · hr1) (c2, d2) = (gr2 , gm2 · hr2)

then
(c1 · c2, d1 · d2) = (gr1+r2 , gm1+m2 · hr1+r2)

computes the sum of m1 and m2 under El-gamal using public
key h = gx.
Note: if m1 +m2 is not to big, it is possible to solve
efficiently the discrete logarithm of gm1+m2 to obtain the sum.

Selene University of Luxembourg 10 / 42

El-gamal homomorphisms:

Reencryption: (gr,m · hr), choose r′ ←
R
Zq. Then

(gr+r′ ,m · hr+r′) = (gr,m · hr) · (gr′ , 1 · hr′) is a reencryption
of m.

Additive homomorphism Let:

(c1, d1) = (gr1 , gm1 · hr1) (c2, d2) = (gr2 , gm2 · hr2)

then
(c1 · c2, d1 · d2) = (gr1+r2 , gm1+m2 · hr1+r2)

computes the sum of m1 and m2 under El-gamal using public
key h = gx.

Note: if m1 +m2 is not to big, it is possible to solve
efficiently the discrete logarithm of gm1+m2 to obtain the sum.

Selene University of Luxembourg 10 / 42

El-gamal homomorphisms:

Reencryption: (gr,m · hr), choose r′ ←
R
Zq. Then

(gr+r′ ,m · hr+r′) = (gr,m · hr) · (gr′ , 1 · hr′) is a reencryption
of m.

Additive homomorphism Let:

(c1, d1) = (gr1 , gm1 · hr1) (c2, d2) = (gr2 , gm2 · hr2)

then
(c1 · c2, d1 · d2) = (gr1+r2 , gm1+m2 · hr1+r2)

computes the sum of m1 and m2 under El-gamal using public
key h = gx.
Note: if m1 +m2 is not to big, it is possible to solve
efficiently the discrete logarithm of gm1+m2 to obtain the sum.

Selene University of Luxembourg 10 / 42

Pedersen commitment
Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Commit: To commit to a message m ∈ G, we choose
r ←

R
Zq. The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is
sent: d = gr.

Properties
Information theoretically hiding: given the commitment c,
any message m′ ∈ G is equally likely, and in particular, having
the secret key x one can compute: r′ = m−m′

x
+ r

Computationally binding: finding two messages m and m′

that open the commitment c requires finding an r and r′ s.t.
gm · hr = gm

′ · hr′ ; then one can compute logg(h) = m′−m
r−r′ .

Selene University of Luxembourg 11 / 42

Pedersen commitment
Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Commit: To commit to a message m ∈ G, we choose
r ←

R
Zq. The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is
sent: d = gr.

Properties
Information theoretically hiding: given the commitment c,
any message m′ ∈ G is equally likely, and in particular, having
the secret key x one can compute: r′ = m−m′

x
+ r

Computationally binding: finding two messages m and m′

that open the commitment c requires finding an r and r′ s.t.
gm · hr = gm

′ · hr′ ; then one can compute logg(h) = m′−m
r−r′ .

Selene University of Luxembourg 11 / 42

Pedersen commitment
Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Commit: To commit to a message m ∈ G, we choose
r ←

R
Zq. The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is
sent: d = gr.

Properties
Information theoretically hiding: given the commitment c,
any message m′ ∈ G is equally likely, and in particular, having
the secret key x one can compute: r′ = m−m′

x
+ r

Computationally binding: finding two messages m and m′

that open the commitment c requires finding an r and r′ s.t.
gm · hr = gm

′ · hr′ ; then one can compute logg(h) = m′−m
r−r′ .

Selene University of Luxembourg 11 / 42

Pedersen commitment
Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Commit: To commit to a message m ∈ G, we choose
r ←

R
Zq. The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is
sent: d = gr.

Properties
Information theoretically hiding: given the commitment c,
any message m′ ∈ G is equally likely, and in particular, having
the secret key x one can compute: r′ = m−m′

x
+ r

Computationally binding: finding two messages m and m′

that open the commitment c requires finding an r and r′ s.t.
gm · hr = gm

′ · hr′ ; then one can compute logg(h) = m′−m
r−r′ .

Selene University of Luxembourg 11 / 42

Pedersen commitment
Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g
of G. Choose x←

R
Zq. Reveal h = gx.

Commit: To commit to a message m ∈ G, we choose
r ←

R
Zq. The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is
sent: d = gr.

Properties
Information theoretically hiding: given the commitment c,
any message m′ ∈ G is equally likely, and in particular, having
the secret key x one can compute: r′ = m−m′

x
+ r

Computationally binding: finding two messages m and m′

that open the commitment c requires finding an r and r′ s.t.
gm · hr = gm

′ · hr′ ; then one can compute logg(h) = m′−m
r−r′ .

Selene University of Luxembourg 11 / 42

Overview

Actors
1. Election Authority (EA)

2. Web Bulletin Board (WBB)

3. Mixnet (M)

4. Teller(s) (T)

5. Voters (Vi)

Selene University of Luxembourg 12 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Voting in seven easy steps

1. Election Authority produces a tracker number ni and its encryption
ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Selene University of Luxembourg 13 / 42

Assuming that m = gm0
is the message to be encrypted, we write {m}h = elhgr, hr · mi, for a

random r.
We write the product of two El Gamal tuples as (a, b)⇥ (c, d) = (a · c, b · d).
We write max the the number of registered voters. We write max0 for the number of voters

who actually voted.
Note that in this scheme reencryption is just multiplication wit {1}hT

.

Bulletin board

WBB

Election authority

EA

8i 2 {1..max}.
choose ni

ei = {ni}hT

mi = hni, ei, zkp(ei)i

mi

post mi

msc Generation of tracker numbers

1

Selene University of Luxembourg 14 / 42

Bulletin board

WBB

Mixnet

M

Teller

T

8i 2 {1..max}.
read hni, ei, zkpii

ei

choose ⇡ 2 Smax

8i 2 {1..max}.
e0i = e⇡(i) ⇥ {1}hT

e0i

e0i

ni = decrypt e0i
choose ri

ci = hri
i · ni

m0
i = he0i, cii

m0
i

post hpki, e
0
i, cii

msc Mixing tracker numbers, proxy reencryption

2

Selene University of Luxembourg 15 / 42

Voter

Vi

Bulletin board

WBB

evi = {vi}pkT

si = sign(evi, ski)
m00

i = hevi, sii

m00
i

read hpki, e
0
i, cii

post hpki, e
0
i, ci, evi, sii

msc Voting

Bulletin board

WBB

Mixnet

M

8i 2 {1..max0}
read hpki, e

0
i, ci, evi, sii

m000
i = he0i, evii

m000
i

choose � 2 Smax0

8i 2 {1..max0}.
e00i = e0�(i) ⇥ {1}hT

ev0i = ev�(i) ⇥ {1}hT

m
(4)
i = he00i , ev0ii

m
(4)
i

post he00i , ev0ii

msc Mixing ballots

3

Selene University of Luxembourg 16 / 42

Voter

Vi

Bulletin board

WBB

evi = {vi}pkT

si = sign(evi, ski)
m00

i = hevi, sii

m00
i

read hpki, e
0
i, cii

post hpki, e
0
i, ci, evi, sii

msc Voting

Bulletin board

WBB

Mixnet

M

8i 2 {1..max0}
read hpki, e

0
i, ci, evi, sii

m000
i = he0i, evii

m000
i

choose � 2 Smax0

8i 2 {1..max0}.
e00i = e0�(i) ⇥ {1}hT

ev0i = ev�(i) ⇥ {1}hT

m
(4)
i = he00i , ev0ii

m
(4)
i

post he00i , ev0ii

msc Mixing ballots

3

Selene University of Luxembourg 17 / 42

Bulletin board

WBB

Teller

T

8i 2 {1..max0}.
read he00i , ev0ii
m

(5)
i = he00i , ev0ii

m
(5)
i

(di, zkpi) = decrypt e00i
(vi, zkp0i) = decrypt ev0i
m

(6)
i = hdi, zkpi, vi, zkp0ii

m
(6)
i

post he00i , ev0i, di, zkpi, vi, zkp0ii

msc Decryption

4

Selene University of Luxembourg 18 / 42

Bulletin board

WBB

Voter

Vi

Teller

T

bi = gri

hpki, bii

read hpki, e
0
i, ci, evi, sii

hpki, cii

d = decrypt elhbi, cii

d

read he00, ev0, d, zkp, v, zkp0i

v

msc Reveal and Check

elgamal: (gr, hr ⇤m) h = gsk

what do we need to check? voter: decrypted tracker matches the line of his vote, therefore needs
access to the bulletin board, and to be able to decrypt the tracker.

all mixers and tellers are corrupt, but don’t collude (?)

5

Selene University of Luxembourg 19 / 42

Tools

Proof Assistants

I Coq [Herberlin et al]

I Certicrypt, Easycrypt [Barthe et al]

I CryptoAgda [Gustafsson, Pouillard]

I Maude, Maude-NPA [Meseguer et al]

I Tamarin [Meier, et al]

Protocol Verifiers

I Applied Pi [Abadi et al]

I ProVerif [Blanchet et al]

I SetPI [Bruni, Mödersheim]

I NRL Analyzer [Meadows]

Selene University of Luxembourg 20 / 42

Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion

Selene University of Luxembourg 21 / 42

Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion

Linear Logic University of Luxembourg 22 / 42

Linear Logic

Linear Logic University of Luxembourg 23 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic

“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.

I Use linear implication, A({B}.
I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”

Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”
Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”
Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”
Linear Logic University of Luxembourg 24 / 42

What is linear logic?
Traditional Logic
“Truth is free.”

I Assumptions may be used
any number of times.

I The logic of facts.

Linear Logic
“Truth is a consumable resource.”

I Assumptions must be
used exactly once.

I The logic of food voting.

Let’s specify a voter check-in process:
I Consume an authorization card to prevent multiple

check-ins.
I Use linear implication, A({B}.

I A({B} ≈ “consume resource A to produce B.”

voting-auth-card({blank-ballot}
“If I give an authorization card, then I get a blank ballot.”
Linear Logic University of Luxembourg 24 / 42

“May I please see your identification?”

voting-auth-card “and photo ID” ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

“May I please see your identification?”

voting-auth-card “and photo ID” ({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

“May I please see your identification?”

voting-auth-card � photo-ID({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

“May I please see your identification?”

voting-auth-card � photo-ID({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

“May I please see your identification?”

voting-auth-card � photo-ID({blank-ballot}
“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

“May I please see your identification?”

voting-auth-card � !photo-ID({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, A�B.

I A � B ≈ “both resources A and B”

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?

Solution:
Use the unrestricted modality, !A.

I !A ≈ “a version of A that is never consumed.”

Linear Logic University of Luxembourg 25 / 42

Ensuring that the Card and ID Match

voting-auth-card � !photo-ID({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, ∀x.A.

I Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.

Linear Logic University of Luxembourg 26 / 42

Ensuring that the Card and ID Match

voting-auth-card � !photo-ID({blank-ballot}
“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, ∀x.A.

I Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.

Linear Logic University of Luxembourg 26 / 42

Ensuring that the Card and ID Match

∀v. voting-auth-card(v) � !photo-ID(v) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, ∀x.A.

I Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.

Linear Logic University of Luxembourg 26 / 42

Ensuring that the Card and ID Match

voting-auth-card(V) � !photo-ID(V) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, ∀x.A.

I Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.

Linear Logic University of Luxembourg 26 / 42

Ensuring that the Card and ID Match

voting-auth-card(V) � !photo-ID(V) ({blank-ballot}
“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, ∀x.A.

I Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.

Linear Logic University of Luxembourg 26 / 42

Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion

Celf, the Concurrent Logical Framework University of Luxembourg 27 / 42

Celf

The
Concurrent Logical Framework

Celf, the Concurrent Logical Framework University of Luxembourg 28 / 42

Substructural Logics

A1, . . . , Am
name

B1, . . . , Bn

I In LLF order matters [Girard ’89, Cervesato et al ’96]

name : A1 � · · ·� Am (B1 � · · ·�Bn

I In CLF order does not matter [Cervesato et al ’02]

name : A1 � · · ·� Am ({B1 � · · ·�Bn}

Celf, the Concurrent Logical Framework University of Luxembourg 29 / 42

Execution as Proof Search

I Proof search

send (vote O)
...

receive (return code R)

corresponds to inhabitation of CLF types.

send (vote O) ({receive (return code R)}

I All terms are equal modulo interleavings

I No leftovers in the multi-set allowed

I Focusing [Andreoli ’93, Chaudhuri ’06, Miller ’05]

Celf, the Concurrent Logical Framework University of Luxembourg 30 / 42

CLF — Types and Kinds

I LLF + concurrency monad [Harper et al ’93]

I Types:

A,B ::= A(B | Πx : A. B | A & B | > | {S} | P
P ::= a | P N

S ::= S1 � S2 | 1 | ∃x : A. S | A

I Kinds:
K ::= type | Πx : A. K

We write A→ B for Πx : A. B if x does not occur in B.

Celf, the Concurrent Logical Framework University of Luxembourg 31 / 42

CLF — Terms

Term syntax:

N ::= λ̂x. N | λx. N | 〈N1, N2〉 | 〈〉 | {E} |
c | x | N1̂N2 | N1 N2 | π1 N | π2 N Objects

E ::= let {p} = N in E |M Expressions

M ::= M1 �M2 | 1 | [N,M] | N Monadic objects

p ::= p1 � p2 | 1 | [x, p] | x Patterns

Equality: α, β, η and let-floating

let {p1} = N1 in let {p2} = N2 in E ≡
let {p2} = N2 in let {p1} = N1 in E

Celf, the Concurrent Logical Framework University of Luxembourg 32 / 42

Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion

Case Study University of Luxembourg 33 / 42

Recall the Selene Protocol

Voting in seven easy steps
1. Election Authority produces a tracker number ni and its encryption

ei for each Voter i;

2. Mixnet shuffles the encrypted trackers ei, resulting in a
re-encryption e′i that loses connection to ni;

3. Teller(s) decrypt eis, assign them to Voters Vi and generate
Pedersen commitments ci, then publish them to the Bulletin Board

4. Votes vi are encrypted (evi) and signed (si) by Voters Vi, and
published along

5. Encrypted tracking numbers and votes 〈e′i, evi〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev′i〉, losing link to the originals;

6. Votes evi are decrypted by the Tellers, and published to the
Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can
check that their vote has been casted.

Case Study University of Luxembourg 34 / 42

Voting and Checking

Voter

Vi

Bulletin board

WBB

evi = {vi}pkT

si = sign(evi, ski)
m00

i = hevi, sii

m00
i

read hpki, e
0
i, cii

post hpki, e
0
i, ci, evi, sii

msc Voting

Bulletin board

WBB

Mixnet

M

8i 2 {1..max0}
read hpki, e

0
i, ci, evi, sii

m000
i = he0i, evii

m000
i

choose � 2 Smax0

8i 2 {1..max0}.
e00i = e0�(i) ⇥ {1}hT

ev0i = ev�(i) ⇥ {1}hT

m
(4)
i = he00i , ev0ii

m
(4)
i

post he00i , ev0ii

msc Mixing ballots

3

Bulletin board

WBB

Voter

Vi

Teller

T

bi = gri

hpki, bii

read hpki, e
0
i, ci, evi, sii

hpki, cii

d = decrypt elhbi, cii

d

read he00, ev0, d, zkp, v, zkp0i

v

msc Reveal and Check

elgamal: (gr, hr ⇤m) h = gsk

what do we need to check? voter: decrypted tracker matches the line of his vote, therefore needs
access to the bulletin board, and to be able to decrypt the tracker.

all mixers and tellers are corrupt, but don’t collude (?)

5

Case Study University of Luxembourg 35 / 42

A Selene Voter in Celf

V : vote I PT WBB C (
{ Exists r.

net (pk I) WBB (+ (elgamal (option C) PT r)

(sig (elgamal (option C) PT r) I)) *

(Pi M1. net PT (pk I) M1 (% randomness

Pi M2. net WBB (pk I) M2 (% trap door commitment

Pi V. eval (dec (construct M1 M2) I) V →
Pi V1. Pi V2. publish (+3 !V1 !V2 !(+ V (option C))) →
{ 1 }

)

}.

Case Study University of Luxembourg 36 / 42

What can we prove?

Case Study University of Luxembourg 37 / 42

Adequacy!

Theorem
There exists a bijection between valid traces of this protocol
and (canonical) objects of type

· ` N : . . . vote V1 C1 (. . . vote Vn Cn (. . .({1}

I Election Authority (EA), Web Bulletin Board (WBB),
Mixnet (M) and Tellers (T) can be modeled similarly

I Celf allows us to experiment with such designs

I We characterize in Celf precisely the protocol that we
want, not more, not less

I Execution may require complex reasoning

Case Study University of Luxembourg 38 / 42

Coherence!

I Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

I Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

I Coherence ensures that the types of multiple processes
are dual to each other

I i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

I Good first sanity check on the protocol design

I In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,

Guttman 2013]

Case Study University of Luxembourg 39 / 42

Coherence!

I Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

I Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

I Coherence ensures that the types of multiple processes
are dual to each other

I i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

I Good first sanity check on the protocol design

I In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,

Guttman 2013]

Case Study University of Luxembourg 39 / 42

Coherence!

I Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

I Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

I Coherence ensures that the types of multiple processes
are dual to each other

I i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

I Good first sanity check on the protocol design

I In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,

Guttman 2013]

Case Study University of Luxembourg 39 / 42

Coherence!

I Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

I Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

I Coherence ensures that the types of multiple processes
are dual to each other

I i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

I Good first sanity check on the protocol design

I In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,

Guttman 2013]

Case Study University of Luxembourg 39 / 42

Coherence!

I Concept originating from Multiparty Session Types
[Honda, Yoshida, Carbone 2008]

I Correspondence between linear logic propositions and
session types [Carbone et al. 2015, 2016]

I Coherence ensures that the types of multiple processes
are dual to each other

I i.e. no wrong execution is possible, where one process is
stuck (remember: linear logic requires emptying the linear
context)

I Good first sanity check on the protocol design

I In the presence of an attacker?
Sessions and Separability in Security Protocols [Carbone,

Guttman 2013]

Case Study University of Luxembourg 39 / 42

Demo time!

Case Study University of Luxembourg 40 / 42

Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion

Conclusion University of Luxembourg 41 / 42

Contributions

Framework perspective
I Logical frameworks support adequate encodings of

complex security protocols

I Coherence check on the protocol design

Model perspective
I First

coherent

formalisation of selene!

I Helped to clarify what messages are exchanged when,
what are the phases

Conclusion University of Luxembourg 42 / 42

Contributions

Framework perspective
I Logical frameworks support adequate encodings of

complex security protocols

I Coherence check on the protocol design

Model perspective
I First

coherent

formalisation of selene!

I Helped to clarify what messages are exchanged when,
what are the phases

Conclusion University of Luxembourg 42 / 42

Contributions

Framework perspective
I Logical frameworks support adequate encodings of

complex security protocols

I Coherence check on the protocol design

Model perspective
I First coherent formalisation of selene!

I Helped to clarify what messages are exchanged when,
what are the phases

Conclusion University of Luxembourg 42 / 42

What we are missing?

Framework perspective
I At the moment the framework lacks coinduction

I Impossible to construct indistinguishability
(bisimulation) proofs without

Model perspective
I Introducing Zero-knowledge proofs

I Express more security properties with dependent types

I Deriving real world implementations from the
generated processes

I Deriving models for other tools

Conclusion University of Luxembourg 43 / 42

What we are missing?

Framework perspective
I At the moment the framework lacks coinduction

I Impossible to construct indistinguishability
(bisimulation) proofs without

Model perspective
I Introducing Zero-knowledge proofs

I Express more security properties with dependent types

I Deriving real world implementations from the
generated processes

I Deriving models for other tools

Conclusion University of Luxembourg 43 / 42

What we are missing?

Framework perspective
I At the moment the framework lacks coinduction

I Impossible to construct indistinguishability
(bisimulation) proofs without

Model perspective
I Introducing Zero-knowledge proofs

I Express more security properties with dependent types

I Deriving real world implementations from the
generated processes

I Deriving models for other tools

Conclusion University of Luxembourg 43 / 42

	Introduction
	Selene
	Linear Logic
	Celf, the Concurrent Logical Framework
	Case Study
	Conclusion

