Selene in Celf: Formalising Voting Protocols in Linear Logic

Alessandro Bruni
(joint work with Carsten Schürmann)

brun@itu.dk

University of Luxembourg
Abstract

Designing security protocols is a task notoriously known to be prone to mistakes. Voting protocols in particular have subtle and often contrasting properties like vote verifiability, receipt-freeness and coercion resistance, hence their precise characterisation is often complex to understand. In this talk, we aim to show how the foundational framework of linear logic can help to produce clear specifications of complex protocols, using the Selene internet voting protocol as a case in point. The notions of coherence and concurrency built into the linear logical framework Celf provide an initial check on the protocol well-formedness, and more advanced security properties can be expressed using dependent types and the higher-order syntactic approach of Celf.
Internet Elections — Challenges

- Election Integrity
- Ballot Secrecy
- Transparency
- Security
- Coercibility
- Receipts

German Supreme Court

Law permitting the use of electronic election machines is unconstitutional.

[Senat 2 BvC 3/07]

Universal Declaration of Human Rights

The will of the people shall be the basis of the authority of government; this will shall be expressed in periodic and genuine elections which shall be by universal and equal suffrage and shall be held by secret vote or by equivalent free voting procedures.

[Article 21.3]
How to design a Voting Protocol

Requirements (highly country dependent)

- Requirements (country dependent)
- Single Points of Failures
- Operational protocols
- Verifiability

Design of a voting protocol

- Cryptographic techniques
- Evidence production
- Individual Verifiability
- Universal Verifiability
“Problem solving is an art form not fully appreciated by some”

As proposed by the project sponsors

As specified in the project request

As designed by the senior analyst

As produced by the programmers

As installed at the user’s site

What the user wanted
The Norwegian Ballot Decryption Ceremony
Zero Knowledge Proofs of Knowledge \(pfk, pfk' \)
The Selene E-voting Protocol

- Need to present?
The Selene E-voting Protocol

▶ Need to present!
The Selene E-voting Protocol

- Need to present!
- Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
The Selene E-voting Protocol

- Need to present!
- Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience... :)

Key ideas
1. votes are publicly posted on a bulletin board makes it easy to trust the result;
2. tracking receipts (tracker numbers) allow users to trust that their vote has been cast, individual verifiability
3. and to fake receipts for potential coercers. receipt freeness
The Selene E-voting Protocol

▶ Need to present!

▶ Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience... 😊

▶ Internet voting protocol designed low-coercion scenarios
The Selene E-voting Protocol

- Need to present!
- Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
dear audience. . . :)
- Internet voting protocol designed low-coercion scenarios

Key ideas

1. votes are publicly posted on a bulletin board makes it easy to trust the result;
2. tracking receipts (*tracker numbers*) allow users to trust that their vote has been cast, individual verifiability
3. and to fake receipts for potential coercers. receipt freeness
El-gamal cryptosystem

Gen: Select a subgroup $G \subset \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow R \mathbb{Z}_q$. Reveal $h = g^x$.

Enc: To encrypt a message $m \in G$, we choose $r \leftarrow R \mathbb{Z}_q$. The ciphertext is then:

$$(c, d) = (g^r, m \cdot h^r).$$

Dec: To decrypt the ciphertext (c, d), compute

$$m = \frac{d}{c^x}.$$
El-gamal homomorphisms:

Reencryption: \((g^r, m \cdot h^r)\), choose \(r' \leftarrow \mathbb{Z}_q\). Then
\[(g^{r}+r', m \cdot h^{r+r'}) = (g^r, m \cdot h^r) \cdot (g^{r'}, 1 \cdot h^{r'})\] is a reencryption of \(m\).
El-gamal homomorphisms:

Reencryotption: \((g^r, m \cdot h^r)\), choose \(r' \leftarrow \mathbb{Z}_q\). Then \((g^{r+r'}, m \cdot h^{r+r'}) = (g^r, m \cdot h^r) \cdot (g^{r'}, 1 \cdot h^{r'})\) is a reencryption of \(m\).

Additive homomorphism Let:

\[
(c_1, d_1) = (g^{r_1}, g^{m_1} \cdot h^{r_1}) \\
(c_2, d_2) = (g^{r_2}, g^{m_2} \cdot h^{r_2})
\]

then

\[
(c_1 \cdot c_2, d_1 \cdot d_2) = (g^{r_1+r_2}, g^{m_1+m_2} \cdot h^{r_1+r_2})
\]

computes the sum of \(m_1\) and \(m_2\) under El-gamal using public key \(h = g^x\).
El-gamal homomorphisms:

Reencryption: \((g^r, m \cdot h^r)\), choose \(r' \xleftarrow{R} Z_q\). Then
\((g^{r+r'}, m \cdot h^{r+r'}) = (g^r, m \cdot h^r) \cdot (g^{r'}, 1 \cdot h^{r'})\) is a reencryption of \(m\).

Additive homomorphism Let:

\[(c_1, d_1) = (g^{r_1}, g^{m_1} \cdot h^{r_1}) \quad (c_2, d_2) = (g^{r_2}, g^{m_2} \cdot h^{r_2})\]

then
\[(c_1 \cdot c_2, d_1 \cdot d_2) = (g^{r_1+r_2}, g^{m_1+m_2} \cdot h^{r_1+r_2})\]

computes the sum of \(m_1\) and \(m_2\) under El-gamal using public key \(h = g^x\).

Note: if \(m_1 + m_2\) is not to big, it is possible to solve efficiently the discrete logarithm of \(g^{m_1+m_2}\) to obtain the sum.
Pedersen commitment

Gen: Select a subgroup $G \subset \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow R \mathbb{Z}_q$. Reveal $h = g^x$.
Pedersen commitment

Gen: Select a subgroup $G \subset \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow \mathbb{Z}_q$. Reveal $h = g^x$.

Commit: To commit to a message $m \in G$, we choose $r \leftarrow \mathbb{Z}_q$. The commitment is then: $c = g^m \cdot h^r$.
Pedersen commitment

Gen: Select a subgroup $G \subset \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow \mathbb{Z}_q$. Reveal $h = g^x$.

Commit: To commit to a message $m \in G$, we choose $r \leftarrow \mathbb{Z}_q$. The commitment is then: $c = g^m \cdot h^r$.

Open: To reveal the message m, the second component is sent: $d = g^r$.
Pedersen commitment

Gen: Select a subgroup $G \subset \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow \mathbb{Z}_q$. Reveal $h = g^x$.

Commit: To commit to a message $m \in G$, we choose $r \leftarrow \mathbb{Z}_q$. The commitment is then: $c = g^m \cdot h^r$.

Open: To reveal the message m, the second component is sent: $d = g^r$.

Properties

Information theoretically hiding: given the commitment c, any message $m' \in G$ is equally likely, and in particular, having the secret key x one can compute: $r' = \frac{m-m'}{x} + r$.
Pedersen commitment

Gen: Select a subgroup $G \subseteq \mathbb{Z}_p^*$ of order q, and a generator g of G. Choose $x \leftarrow \mathbb{Z}_q$. Reveal $h = g^x$.

Commit: To commit to a message $m \in G$, we choose $r \leftarrow \mathbb{Z}_q$. The commitment is then: $c = g^m \cdot h^r$.

Open: To reveal the message m, the second component is sent: $d = g^r$.

Properties

Information theoretically hiding: given the commitment c, any message $m' \in G$ is equally likely, and in particular, having the secret key x one can compute: $r' = \frac{m-m'}{x} + r$

Computationally binding: finding two messages m and m' that open the commitment c requires finding an r and r' s.t. $g^m \cdot h^r = g^{m'} \cdot h^{r'}$; then one can compute $\log_g(h) = \frac{m'-m}{r-r'}$.
Overview

Actors

1. Election Authority \((EA)\)
2. Web Bulletin Board \((WBB)\)
3. Mixnet \((M)\)
4. Teller(s) \((T)\)
5. Voters \((V_i)\)
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;

2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;
2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;
3. Teller(s) decrypt e_is, assign them to Voters V_i and generate Pedersen commitments c_i, then publish them to the Bulletin Board
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;

2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;

3. Teller(s) decrypt e_is, assign them to Voters V_i and generate Pedersen commitments c_i, then publish them to the Bulletin Board

4. Votes v_i are encrypted (ev_i) and signed (s_i) by Voters V_i, and published along
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;
2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;
3. Teller(s) decrypt e_is, assign them to Voters V_i and generate Pedersen commitments c_i, then publish them to the Bulletin Board;
4. Votes v_i are encrypted (ev_i) and signed (s_i) by Voters V_i, and published along;
5. Encrypted tracking numbers and votes $⟨e'_i, ev_i⟩$ are shuffled by the Mixnet, then published as $⟨e''_i, ev'_i⟩$, losing link to the originals;
Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;
2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;
3. Teller(s) decrypt e_is, assign them to Voters V_i and generate Pedersen commitments c_i, then publish them to the Bulletin Board
4. Votes v_i are encrypted (ev_i) and signed (s_i) by Voters V_i, and published along
5. Encrypted tracking numbers and votes $\langle e'_i, ev_i \rangle$ are shuffled by the Mixnet, then published as $\langle e''_i, ev'_i \rangle$, losing link to the originals;
6. Votes ev_i are decrypted by the Tellers, and published to the Bulletin Board
Voting in seven easy steps

1. Election Authority produces a tracker number \(n_i \) and its encryption \(e_i \) for each Voter \(i \);

2. Mixnet shuffles the encrypted trackers \(e_i \), resulting in a re-encryption \(e_i' \) that loses connection to \(n_i \);

3. Teller(s) decrypt \(e_i \)'s, assign them to Voters \(V_i \) and generate Pedersen commitments \(c_i \), then publish them to the Bulletin Board

4. Votes \(v_i \) are encrypted \((ev_i)\) and signed \((s_i)\) by Voters \(V_i \), and published along

5. Encrypted tracking numbers and votes \(\langle e_i', ev_i \rangle \) are shuffled by the Mixnet, then published as \(\langle e''_i, ev'_i \rangle \), losing link to the originals;

6. Votes \(ev_i \) are decrypted by the Tellers, and published to the Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can check that their vote has been casted.
Assuming that \(m = g^m_0 \) is the message to be encrypted, we write \(\{m\}h = elhgr, hr \cdot mi, \) for a random \(r. \)

We write the product of two El Gamal tuples as \((a, b) \cdot (c, d) = (a \cdot c, b \cdot d)\).

We write \(\max \) the the number of registered voters. We write \(\max_0 \) for the number of voters who actually voted.

Note that in this scheme reencryption is just multiplication with \(\{1\}hT. \)
\[\forall i \in \{1..max\}. \]
\[\text{read } \langle n_i, e_i, zk_{pi} \rangle \]

\[\text{choose } \pi \in S_{\max} \]
\[\forall i \in \{1..max\}. \]
\[e'_i = e_{\pi(i)} \times \{1\}^{h_T} \]

\[n_i = \text{decrypt } e'_i \]
\[\text{choose } r_i \]
\[c_i = h_i^{r_i} \cdot n_i \]
\[m'_i = \langle e'_i, c_i \rangle \]

Post \[\langle pk_i, e'_i, c_i \rangle \]
Voter \(V_i \) Bulletin board \(WBB \)

\[\begin{align*}
 e v_i &= \{ v_i \}_{pk_T} \\
 s_i &= \text{sign}(ev_i, sk_i) \\
 m''_i &= \langle ev_i, s_i \rangle
\end{align*} \]

\[\begin{align*}
 m''_i &= \text{read } \langle pk_i, e_i', c_i \rangle \\
 \text{post } \langle pk_i, e_i', c_i, ev_i, s_i \rangle
\end{align*} \]
\[\forall i \in \{1..max'\} \]
\[\text{read } \langle pk_i, e'_i, c_i, ev_i, s_i \rangle \]
\[m'''_i = \langle e'_i, ev_i \rangle \]

\[\text{choose } \sigma \in S_{max'} \]
\[\forall i \in \{1..max'\}. \]
\[e''_i = e'_{\sigma(i)} \times \{1\}_{h_T} \]
\[ev'_i = ev_{\sigma(i)} \times \{1\}_{h_T} \]
\[m^{(4)}_i = \langle e''_i, ev'_i \rangle \]

\[\text{post } \langle e''_i, ev'_i \rangle \]
\textbf{msc Decryption}

\begin{align*}
\forall i \in \{1..\text{max}'\}, \text{read } & \langle e''_i, ev'_i \rangle \\
& m^{(5)}_i = \langle e''_i, ev'_i \rangle
\end{align*}

\begin{align*}
(d_i, zk p_i) &= \text{decrypt } e''_i \\
(v_i, zk p'_i) &= \text{decrypt } ev'_i \\
& m^{(6)}_i = \langle d_i, zk p_i, v_i, zk p'_i \rangle
\end{align*}

post \(\langle e''_i, ev'_i, d_i, zk p_i, v_i, zk p'_i \rangle \)
Reveal and Check

WBB
- Bulletin board

V
- Voter

T
- Teller

\[b_i = g^{r_i} \]

\[\langle pk_i, b_i \rangle \]

\[\langle pk_i, c_i \rangle \]

\[d = \text{decrypt el} \langle b_i, c_i \rangle \]

\[\text{read } \langle e'', ev', d, zkp, v, zkp' \rangle \]

\[v \]
Tools

Proof Assistants

- Coq [Herberlin et al]
- Certicrypt, Easycrypt [Barthe et al]
- CryptoAgda [Gustafsson, Pouillard]
- Maude, Maude-NPA [Meseguer et al]
- Tamarin [Meier, et al]

Protocol Verifiers

- Applied Pi [Abadi et al]
- ProVerif [Blanchet et al]
- SetPI [Bruni, Mödersheim]
- NRL Analyzer [Meadows]
Table of Contents

1. Introduction
2. Selene
3. Linear Logic
4. Celf, the Concurrent Logical Framework
5. Case Study
6. Conclusion
Linear Logic
What is linear logic?

Traditional Logic Linear Logic

“Truth is free.”

- Assumptions may be used any number of times.

Let’s specify a voter check-in process:
- Consume an authorization card to prevent multiple check-ins.
- Use linear implication, $A \implies \{B\}$.
- $A \implies \{B\} \approx \text{"consume resource } A \text{ to produce } B\text{."}$

$voting-auth-card \implies \{blank-ballot\}$

“If I give an authorization card, then I get a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.

Let’s specify a voter check-in process:

- Consume an authorization card to prevent multiple check-ins.

- Use linear implication, $A \multimap \{B\}$.

- $A \multimap \{B\} \equiv \text{consume resource } A \text{ to produce } B$.

$voting-auth-card \multimap \{blank-ballot\}$

“If I give an authorization card, then I get a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food.

Let’s specify a voter check-in process:

- Consume an authorization card to prevent multiple check-ins.
- Use linear implication, $A \implies \{B\}$.
- $A \implies \{B\} \approx \text{"consume resource } A \text{ to produce } B\text."$

$voting-auth-card \implies \{blank-ballot\}$

“If I give an authorization card, then I get a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food voting.

Let's specify a voter check-in process:

- Consume an authorization card to prevent multiple check-ins.
- Use linear implication, $A \Rightarrow \{B\}$.
- $A \Rightarrow \{B\} \approx \text{“consume resource } A \text{ to produce } B\text{.”}$
- $\text{voting-auth-card} \Rightarrow \{\text{blank-ballot}\}$

“If I give an authorization card, then I get a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food voting.

Let’s specify a voter check-in process:

- \textit{Consume} an authorization card to prevent multiple check-ins.
What is linear logic?

Traditional Logic

“Truth is free.”

► Assumptions may be used any number of times.
► The logic of facts.

Linear Logic

“Truth is a consumable resource.”

► Assumptions must be used exactly once.
► The logic of food voting.

Let’s specify a voter check-in process:

► *Consume* an authorization card to prevent multiple check-ins.
► Use linear implication, \(A \rightarrow \{ B \} \).

 ► \(A \rightarrow \{ B \} \approx \text{“consume resource } A \text{ to produce } B \text{.”} \)
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food voting.

Let’s specify a voter check-in process:

- **Consume** an authorization card to prevent multiple check-ins.
- Use linear implication, \(A \dashv \triangleright \{ B \} \).
 - \(A \dashv \triangleright \{ B \} \approx “consume \ resource \ A \ to \ produce \ B.”\)

\[\text{voting-auth-card} \dashv \triangleright \{ \text{blank-ballot} \} \]

“If I **give** an authorization card, then I **get** a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food voting.

Let’s specify a voter check-in process:

- **Consume** an authorization card to prevent multiple check-ins.
- Use linear implication, $A \multimap \{ B \}$.
 - $A \multimap \{ B \} \approx \text{“consume resource } A \text{ to produce } B \text{.”}$

$voting-auth-card \multimap \{ blank-ballot \}$

“If I give an authorization card, then I get a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

- Assumptions may be used any number of times.
- The logic of facts.

Linear Logic

“Truth is a consumable resource.”

- Assumptions must be used exactly once.
- The logic of food voting.

Let’s specify a voter check-in process:

- *Consume* an authorization card to prevent multiple check-ins.
- Use linear implication, $A \rightsquigarrow \{B\}$.
 - $A \rightsquigarrow \{B\} \approx “consume$ resource A to produce $B.”$

$voting-auth-card \rightsquigarrow \{blank-ballot\}$

“If I *give* an authorization card, then I *get* a blank ballot.”
What is linear logic?

Traditional Logic

“Truth is free.”

▶ Assumptions may be used any number of times.
▶ The logic of facts.

Linear Logic

“Truth is a consumable resource.”

▶ Assumptions must be used exactly once.
▶ The logic of food voting.

Let’s specify a voter check-in process:

▶ *Consume* an authorization card to prevent multiple check-ins.
▶ Use linear implication, \(A \rightarrow \{ B \} \).
 ▶ \(A \rightarrow \{ B \} \approx \text{“consume resource } A \text{ to produce } B \text{.”} \)

\[
\text{voting-auth-card} \rightarrow \{ \text{blank-ballot} \}
\]

“If I *give* an authorization card, then I *get* a blank ballot.”
“May I please see your identification?”

\[
\text{voting-auth-card} \text{ “and photo ID” } \rightarrow \{ \text{blank-ballot} \}
\]

“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?
“May I please see your identification?”

\[\text{voting-auth-card} \text{ “and photo ID” } \rightarrow \{\text{blank-ballot}\}\]

“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, \(A \otimes B \).

- \(A \otimes B \approx \text{“both resources } A \text{ and } B \text{”} \)
“May I please see your identification?”

\[\text{voting-auth-card} \otimes \text{photo-ID} \rightarrow \{ \text{blank-ballot} \} \]

“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, \(A \otimes B \).

\[A \otimes B \approx \text{“both resources } A \text{ and } B \text{”} \]
“May I please see your identification?”

\[\text{voting-auth-card} \otimes \text{photo-ID} \rightarrow \{ \text{blank-ballot} \} \]

“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, \(A \otimes B \).

\[A \otimes B \approx \text{“both resources } A \text{ and } B \text{”} \]

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only \textit{show} the ID?
“May I please see your identification?”

$voting-auth-card \otimes photo-ID \rightarrow \{ blank-ballot \}$

“If I give an auth. card and a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, $A \otimes B$.

$A \otimes B \approx \text{“both resources } A \text{ and } B\text{”}$

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?
“May I please see your identification?”

\[
\text{voting-auth-card} \otimes !\text{photo-ID} \to \{\text{blank-ballot}\}
\]

“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
How to express a pair of resources?

Solution:
Use simultaneous conjunction, \(A \otimes B \).

\[A \otimes B \approx \text{“both resources } A \text{ and } B \text{”} \]

Problem:
Linear implication incorrectly consumes the photo ID.
In linear logic, how do we only show the ID?
Ensuring that the Card and ID Match

\[\text{voting-auth-card} \otimes !\text{photo-ID} \rightarrow \{ \text{blank-ballot} \} \]

“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.
Ensuring that the Card and ID Match

\[\text{voting-auth-card} \otimes !\text{photo-ID} \rightarrow \{\text{blank-ballot}\} \]

“If I give an auth. card and show a photo ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, \(\forall x.A \).

- Quantified variables are not resources.
Ensuring that the Card and ID Match

\[\forall v. \text{voting-auth-card}(v) \otimes !\text{photo-ID}(v) \rightarrow \{\text{blank-ballot}\} \]

“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, \(\forall x.A. \)

- Quantified variables are not resources.
Ensuring that the Card and ID Match

\[\text{voting-auth-card}(V) \otimes \text{!photo-ID}(V) \rightarrow \{\text{blank-ballot}\} \]

“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, \(\forall x.A \).

- Quantified variables are not resources.
Ensuring that the Card and ID Match

\[voting-auth-card(V) \otimes !photo-ID(V) \rightarrow \{blank-ballot\}\]

“If I give an auth. card and show a matching ID, then I get a ballot.”

Problem:
Doesn’t ensure that auth. card and photo ID match.

Solution:
Use universal quantification, \(\forall x.A\).

- Quantified variables are not resources.

Problem:
Doesn’t ensure that the auth. card and ID are mine.
Table of Contents

1. Introduction
2. Selene
3. Linear Logic
4. Celf, the Concurrent Logical Framework
5. Case Study
6. Conclusion
Celf

The Concurrent Logical Framework
Substructural Logics

\[
\frac{A_1, \ldots, A_m}{B_1, \ldots, B_n} \text{name}
\]

- In LLF order matters [Girard ’89, Cervesato et al ’96]

\[
\text{name} : A_1 \otimes \cdots \otimes A_m \rightarrow B_1 \otimes \cdots \otimes B_n
\]

- In CLF order does not matter [Cervesato et al ’02]

\[
\text{name} : A_1 \otimes \cdots \otimes A_m \rightarrow \{B_1 \otimes \cdots \otimes B_n\}
\]
Execution as Proof Search

- Proof search

\[
\text{send } (\text{vote } O) \\
\quad : \\
\text{receive } (\text{return_code } R)
\]

corresponds to inhabitation of CLF types.

\[
\text{send } (\text{vote } O) \rightarrow \{\text{receive } (\text{return_code } R)\}
\]

- All terms are equal modulo interleavings
- No leftovers in the multi-set allowed
- Focusing \[\text{[Andreoli '93, Chaudhuri '06, Miller '05]}\]
CLF — Types and Kinds

- LLF + concurrency monad \([\text{Harper et al ’93}]\)
- Types:

\[
A, B ::= A \rightarrow B \mid \Pi x : A. B \mid A \& B \mid \top \mid \{S\} \mid P
\]

\[
P ::= a \mid P \cdot N
\]

\[
S ::= S_1 \otimes S_2 \mid 1 \mid \exists x : A. S \mid A
\]

- Kinds:

\[
K ::= \text{type} \mid \Pi x : A. K
\]

We write \(A \rightarrow B\) for \(\Pi x : A. B\) if \(x\) does not occur in \(B\).
CLF — Terms

Term syntax:

\[
N ::= \widehat{\lambda x. \ N} \mid \lambda x. \ N \mid \langle N_1, N_2 \rangle \mid \langle \rangle \mid \{E\} \mid c \mid x \mid N_1 \overline{N}_2 \mid N_1 \ N_2 \mid \pi_1 \ N \mid \pi_2 \ N
\]

\[
E ::= \text{let } \{p\} = N \text{ in } E \mid M
\]

\[
M ::= M_1 \otimes M_2 \mid 1 \mid [N, M] \mid N
\]

\[
p ::= p_1 \otimes p_2 \mid 1 \mid [x, p] \mid x
\]

Equality: \(\alpha, \beta, \eta\) and let-floating

\[
\text{let } \{p_1\} = N_1 \text{ in let } \{p_2\} = N_2 \text{ in } E \equiv
\]

\[
\text{let } \{p_2\} = N_2 \text{ in let } \{p_1\} = N_1 \text{ in } E
\]
Table of Contents

1 Introduction

2 Selene

3 Linear Logic

4 Celf, the Concurrent Logical Framework

5 Case Study

6 Conclusion
Recall the Selene Protocol

Voting in seven easy steps

1. Election Authority produces a tracker number n_i and its encryption e_i for each Voter i;

2. Mixnet shuffles the encrypted trackers e_i, resulting in a re-encryption e'_i that loses connection to n_i;

3. Teller(s) decrypt e_is, assign them to Voters V_i and generate Pedersen commitments c_i, then publish them to the Bulletin Board

4. Votes v_i are encrypted (ev_i) and signed (s_i) by Voters V_i, and published along

5. Encrypted tracking numbers and votes $\langle e'_i, ev_i \rangle$ are shuffled by the Mixnet, then published as $\langle e''_i, ev'_i \rangle$, losing link to the originals;

6. Votes ev_i are decrypted by the Tellers, and published to the Bulletin Board

7. Commitments are revealed by the Teller(s) to the Voters, who can check that their vote has been casted.
Voting and Checking

msc Voting

- **V_i** (Voter)
 - $ev_i = \{v_i\}_{pk_T}$
 - $s_i = \text{sign}(ev_i, sk_i)$
 - $m'_i = \langle ev_i, s_i \rangle$

WBB (Bulletin board)

- **m''_i**
- **read** $\langle pk_i, e'_i, c_i \rangle$
- **post** $\langle pk_i, e'_i, c_i, ev_i, s_i \rangle$

msc Reveal and Check

- **V_i** (Voter)
 - **read** $\langle pk_i, e'_i, c_i, ev_i, s_i \rangle$
 - **WBB** (Bulletin board)
 - **T** (Teller)
 - **$b_i = g^{r_i}$**

- **$\langle pk_i, c_i \rangle$**
- **$d = \text{decrypt el}\{b_i, c_i\}$**
- **read** $\langle e'', ev', d, zk_p, v, zk_p' \rangle$
 - **v**

Case Study
A Selene Voter in Celf

\[V : \text{vote I PT WBB C} \rightarrow \]
\{ Exists r.
 net (pk I) WBB (+ (elgamal (option C) PT r)
 (sig (elgamal (option C) PT r) I)) *
 (Pi M1. net PT (pk I) M1 \rightarrow % randomness
 Pi M2. net WBB (pk I) M2 \rightarrow % trap door commitment
 Pi V. eval (dec (construct M1 M2) I) V \rightarrow
 Pi V1. Pi V2. publish (+3 !V1 !V2 !(+ V (option C))) \rightarrow
 \{ 1 \})
)
\}.
What can we prove?
Adequacy!

Theorem

There exists a bijection between valid traces of this protocol and (canonical) objects of type

\[\vdash N : \ldots \text{vote } V_1 \ C_1 \circ \ldots \text{vote } V_n \ C_n \circ \ldots \circ \{1\} \]

- Election Authority (EA), Web Bulletin Board (WBB), Mixnet (M) and Tellers (T) can be modeled similarly
- Celf allows us to experiment with such designs
- We characterize in Celf precisely the protocol that we want, not more, not less
- Execution may require complex reasoning
Coherence!

- Concept originating from Multiparty Session Types [Honda, Yoshida, Carbone 2008]
- Correspondence between linear logic propositions and session types [Carbone et al. 2015, 2016]
Coherence!

- Concept originating from Multiparty Session Types [Honda, Yoshida, Carbone 2008]
- Correspondence between linear logic propositions and session types [Carbone et al. 2015, 2016]
- Coherence ensures that the types of multiple processes are dual to each other
Coherence!

- Concept originating from Multiparty Session Types [Honda, Yoshida, Carbone 2008]
- Correspondence between linear logic propositions and session types [Carbone et al. 2015, 2016]
- Coherence ensures that the types of multiple processes are dual to each other
- i.e. no wrong execution is possible, where one process is stuck (remember: linear logic requires emptying the linear context)
Coherence!

- Concept originating from Multiparty Session Types [Honda, Yoshida, Carbone 2008]
- Correspondence between linear logic propositions and session types [Carbone et al. 2015, 2016]
- Coherence ensures that the types of multiple processes are dual to each other
- i.e. no wrong execution is possible, where one process is stuck (remember: linear logic requires emptying the linear context)
- Good first sanity check on the protocol design
Coherence!

- Concept originating from Multiparty Session Types [Honda, Yoshida, Carbone 2008]
- Correspondence between linear logic propositions and session types [Carbone et al. 2015, 2016]
- Coherence ensures that the types of multiple processes are dual to each other
- i.e. no wrong execution is possible, where one process is stuck (remember: linear logic requires emptying the linear context)
- Good first sanity check on the protocol design
- In the presence of an attacker?
 Sessions and Separability in Security Protocols [Carbone, Guttman 2013]
Demo time!
Table of Contents

1. Introduction
2. Selene
3. Linear Logic
4. Celf, the Concurrent Logical Framework
5. Case Study
6. Conclusion
Contributions

Framework perspective

- Logical frameworks support adequate encodings of complex security protocols
- Coherence check on the protocol design
Contributions

Framework perspective

- Logical frameworks support adequate encodings of complex security protocols
- Coherence check on the protocol design
Contributions

Framework perspective

- Logical frameworks support adequate encodings of complex security protocols
- Coherence check on the protocol design

Model perspective

- First coherent formalisation of selene!
- Helped to clarify what messages are exchanged when, what are the phases
What we are missing?

Framework perspective

▶ At the moment the framework lacks coinduction
▶ Impossible to construct indistinguishability (bisimulation)

Model perspective

▶ Introducing Zero-knowledge proofs
▶ Express more security properties with dependent types
▶ Deriving real world implementations from the generated processes
▶ Deriving models for other tools
What we are missing?

Framework perspective

- At the moment the framework lacks **coinduction**
- Impossible to construct **indistinguishability** (bisimulation) proofs without
What we are missing?

Framework perspective

- At the moment the framework lacks **coinduction**
- Impossible to construct **indistinguishability (bisimulation)** proofs without

Model perspective

- Introducing Zero-knowledge proofs
- Express more security properties with dependent types
- Deriving **real world implementations** from the generated processes
- Deriving **models** for other tools