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Selling Formal Verification

“Security protocols are three line programs that people still manage
to get wrong”

(Roger Needham)

Voting protocols are ten line programs that:
I use hard crypto

homomorphic encryption, zero-knowledge proofs, commitment schemes,
oblivious transfers, threshold cryptography...

I have colorful security properties
vote-privacy, individual verifiability, universal verifiability, coercion
resistance, receipt freeness...

I sometimes do not come with security proofs
I (and kill your favourite verification engine)
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Contributions

We propose:
I The first formal model of the Selene voting protocol
I A simplified version of the protocol amenable to automatic

verification
I A convergent equational theory for Pedersen-style

commitments used by Selene
Results:

I We prove Vote Privacy in our model
I We show a known attack for Selene Receipt Freeness, and

prove the security of the corrected version
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The Selene E-voting Protocol

I Due to Peter Ryan, Peter Rønne, Vincenzo Iovino
I Internet voting protocol designed for low-coercion scenarios

Key ideas

1. votes are publicly posted on a bulletin board makes it easy to
trust the result;

2. tracking receipts (tracker numbers) allow users to trust that
their vote has been cast, 3individual verifiability

3. and to fake receipts for potential coercers. 3receipt freeness
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El-gamal cryptosystem

Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g of
G . Choose x ←

R
Zq. Reveal h = g x .

Enc: To encrypt a message m ∈ G , we choose r ←
R

Zq. The

ciphertext is then:
(c , d) = (g r ,m · hr ).

Dec: To decrypt the ciphertext (c , d), compute

m =
d

cx
.
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El-gamal homomorphisms:

Reencryption:

Let (g r ,m · hr ) be an encryption of m with randomness r .

By chosing r ′ ←
R

Zq, we can re-encrypt the message m with

(g r+r ′ ,m · hr+r ′) = (g r ,m · hr ) · (g r ′ , 1 · hr ′).

Shuffling mixnets can be built by chaining re-encryption mixers,
that apply re-encryption and randomly shuffle the values.

If at least one node in the mixnet is honest, the link between input
and output is lost from the perspective of an observer.
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Pedersen-style commitment

Gen: Select a subgroup G ⊂ Z∗p of order q, and a generator g of
G . Choose x ←

R
Zq. Reveal h = g x .

Commit: To commit to a message m ∈ G , we choose r ←
R

Zq.

The commitment is then: c = gm · hr .

Open: To reveal the message m, the second component is sent:
d = g r .

Properties
Information theoretically hiding: given the commitment c , any
message m′ ∈ G is equally likely, and in particular, having the
secret key x one can compute: r ′ = m−m′

x + r
Computationally binding: finding two messages m and m′ that
open the commitment c requires finding an r and r ′ s.t.
gm · hr = gm′ · hr ′ ; then one can compute logg (h) =

m′−m
r−r ′ .
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Selene: Voting in seven “easy” steps

1. Election Authority produces a tracker number ni
and its encryption ei for each Voter i ;

2. Mixnet shuffles the encrypted trackers ei ,
resulting in a re-encryption e′i that loses
connection to ni ;

3. Teller(s) generate Pedersen commitments ci s for the ni s, assign them to
Voters Vi , then publish them to the Bulletin Board

4. Votes vi are encrypted (evi ) and signed (si ) by Voters Vi , and published
along

5. Encrypted tracking numbers and votes 〈e′i , evi 〉 are shuffled by the
Mixnet, then published as 〈e′′i , ev ′

i 〉, losing link to the originals;

6. Votes evi and trackers ci s are decrypted by the Tellers, and published to
the Bulletin Board

7. Commitments are opened by the Teller(s) to the Voters, who can check
that their vote has been casted.
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Caveat emptor

To allow mechanised analysis in Tamarin, we assume an external
active adversary who may collude with one of two voters.

Therefore:
I Only one teller is needed (since we assume it is honest)
I Re-encryption mixing is replaced by ballot shuffling
I No zero-knowledge proofs of secure computation are needed

for the Teller, Bulletin Board and Election Authority
I We assume the existence of authentic and confidential

channels for all communication between the honest parties
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Simplified Selene (1)
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Simplified Selene (2)
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Simplified Selene (3)
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Tamarin 101

Theorem prover based on multiset-rewrite rules:

l−[α]→r

I States S are multiset of facts (initial state ∅)
I Bang (!) modality for replicated facts
I Given a rule l−[α]→r and a substitution σ, a transition
σ(l

α→ r) can fire on state S iff σ(l) ⊆ S , and produces a state
S ′ = S \ α(l ] r)

Observational equivalence “Given two systems, equivalent rules
should fire in equivalent states.”

diff (t1, t2) terms are used to distinguish the two systems
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Tamarin model

Rules:

I Setup, generates key pairs, initializes
all agents

I EA, Election Authority, generates
tracker numbers

I T1, teller commits a tracker number
to each voter

I V 1, voting phase

I T2, teller decrypts the encrypted vote

I T2sync , all votes are shuffled

I V 2, “reveal and check”
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Equational theory

To model the commitment scheme we need the following two
equations:

1. open(commit(n, r , pk(sk)), r , sk) = n

2. commit(n2, fake(n1, r , sk , n2), pk(sk)) = commit(n1, r , pk(sk))

Using Maude’s Church-Rosser checker we produce their
Knuth-Bendix completion:

3. open(commit(n1, r , pk(sk)), fake(n1, r , sk, n2), sk) = n2

However, this system of equations is still not confluent, to make it
so we need to add the following equation:

4. fake(n2, fake(n1, r , sk , n2), sk, n3) = fake(n1, r , sk , n3)
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Checked Properties

Vote Privacy
I We build two models SL,SR using diff terms where the two

voters swap candidates.
I Tamarin proves that SL ≈E SR

I We adapt the definitions from Delaune et al. 2008 to
multiset-rewrite rules

Receipt Freeness
I We substitute rule V 2 with two rules:

1. One for the coerced voter, who reveals all his secret
information, along with a fake or real opening of the
commitment

2. One for the colluding voter, who reveals his tracker number
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Results

Vote Privacy 3

I As long as the voters are honest, the attacker cannot
distinguish between the two systems

Receipt Freeness

I If the coerced voter hands a fake receipt for the tracker
number of the colluding voter, the attacker can find out

I This attack is known (Ryan et. al 2016)
I However if the coerced voter is given n fake tracking numbers

for each candidate to chose from, then the property holds
I We check this by extending our Tamarin model
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