
Probability theory can be fun and simple with dependent types
(Yet another formal theory of probabilities in Coq)

Reynald Affeldt, Alessandro Bruni, Pierre Roux, Takafumi Saikawa

30th International Conference on Types for Proofs and Programs
10 ‑ 14 June 2024

An overview of existing formalizations of probabilities in Coq 1

InfoTheo (2009–ongoing)
• Formalizes finite probabilities; used for information theory [Affeldt et al., 2014],
error-correcting codes [Affeldt et al., 2020a], robust statistics [Affeldt et al., 2024a]

coq-proba [Tassarotti, 2023]
• Used to verify a compiler for probabilistic programming languages [Tassarotti and
Tristan, 2023]

FormalML [The FormalML development team, 2023]
• Contains advanced theorems in probability theory, e.g., a stochastic approximation
theorem [Vajjha et al., 2022]

1ISABELLE/HOL and MATHLIB have extensive libraries for probabilities, this talk focuses on Coq

A proof engineering effort

Applications of MathComp-Analysis to probabilities?

MathComp-Analysis timeline
• Asymptotic reasoning + Landau notations → differentiability [Affeldt et al., 2018]
• Lebesgue integral [Affeldt and Cohen, 2023]
• Fundamental theorem of calculus [Affeldt and Stone, 2024]
• Probability theory (2023–ongoing)

Applications to probabilities
• Verified probabilistic programming languages [CPP 2023, APLAS 2023]
• Verified worst-case failure probability of real-time systems [Markovic et al., 2023]

Other planned applications
• Verified robust statistics [Daukantas et al., 2021, Affeldt et al., 2024a]
• Verified machine learning [Affeldt et al., 2024b]

An example: Bernoulli sampling [Rajani, 2019]

Bernoulli sampling
Given n independent 0-1 random variables Xi, p ∈ (0, 1], θ ∈ (0, p), δ ∈ (0, 1]
with Pr(Xi = 1) = p, X =

∑n
i=1Xi, and X̄ = X

n ,
then Pr(|X̄ − p| ≤ θ) ≥ 1− δ when n ≥ 3

θ2
ln(2δ).

Simple and general: inherit from measure theory with Hierarchy Builder

Definition (Measure)
A measure µ : P(T) → R satisfies:
1. µ(∅) = 0 (measure-0)
2. 0 ≤ µ(A) for any set A (non-negativity)
3. µ(

∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) (σ-additivity)

Definition (Probability measure)
A probability measure additionally implements the following interface:
HB.factory Record Measure_isProbability d (T : measurableType d)

(R : realType) (P : set T -> \bar R) of isMeasure _ _ _ P :=
{ probability_setT : P setT = 1%E }.

Simple and general: inherit from measure theory with Hierarchy Builder

Definition (Measure)
A measure µ : P(T) → R satisfies:
1. µ(∅) = 0 (measure-0)
2. 0 ≤ µ(A) for any set A (non-negativity)
3. µ(

∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) (σ-additivity)

Definition (Probability measure)
A probability measure additionally implements the following interface:
HB.factory Record Measure_isProbability d (T : measurableType d)

(R : realType) (P : set T -> \bar R) of isMeasure _ _ _ P :=
{ probability_setT : P setT = 1%E }.

…and fun: random variables and expectations

Context d (T : measurableType d) (R : realType) (P : probability T R).

Definition (Random variables)
A random variable is neither random, nor a variable. It’s a measurable function from T to R.
Definition random_variable := {mfun T >-> R}.
Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

Definition (Expectation)
Expectation of X with the measure P can be expressed as the Lebesgue integral

∫
X dP :

Definition expectation (X : {RV P >-> R}) := \int[P]_w (X w)%:E.

…and fun: random variables and expectations

Context d (T : measurableType d) (R : realType) (P : probability T R).

Definition (Random variables)
A random variable is neither random, nor a variable. It’s a measurable function from T to R.
Definition random_variable := {mfun T >-> R}.
Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

Definition (Expectation)
Expectation of X with the measure P can be expressed as the Lebesgue integral

∫
X dP :

Definition expectation (X : {RV P >-> R}) := \int[P]_w (X w)%:E.

Recovering discreteness

Discrete (random) variables
Discrete random variables additionally implement the following interface:
HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Discrete sums
When X : {dRV P >-> R} (the type of discrete random variables),
we build a function ak to enumerate its values, and ck to enumerate the probabilities,
so that the distribution can be written as

∑
k ckδak :

Lemma distribution_dRV A : measurable A ->
distribution P X A = \sum_(k <oo) c X k * \d_(a X k) A.

Recovering discreteness

Discrete (random) variables
Discrete random variables additionally implement the following interface:
HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Discrete sums
When X : {dRV P >-> R} (the type of discrete random variables),
we build a function ak to enumerate its values, and ck to enumerate the probabilities,
so that the distribution can be written as

∑
k ckδak :

Lemma distribution_dRV A : measurable A ->
distribution P X A = \sum_(k <oo) c X k * \d_(a X k) A.

(More) formal adventures in convex spaces

[Affeldt et al., 2020b] shows that probability theory benefits from a
theory of convex spaces.
We are porting it to MathComp-Analysis to define convex functions:

Convex function
Definition convex_function (R : realType) (D : set R) (f : R -> R) :=

forall t : {i01 R}, {in D &, forall (x y : R), f (x <| t |> y) <= f x <| t |> f y}.

Exponentials are convex
Lemma convex_expR : convex_function setT expR.
Lemma convex_powR p : 1 <= p -> convex_function `[0, +oo[(fun x : R => powR x p).

Moments: exponential expectations
Definition mmt_gen_fun (X : {RV P >-> R}) (t : R) := 'E_P[expR \o t \o* X].

Applications of convexity: Hölder and Minkowski and Lp -spaces

We are building a theory of Lp -spaces. For that purpose we prove Hölder’s and Minkowski’s
inequalities, which are also generally applicable to probabilities:
Hölder
Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 (* Hoelder conjugates *) ->
'N_1 [f * g] <= 'N_p [f] * 'N_q [g].

Minkowski
Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g].

(Here \+ and * are pointwise addition and multiplication, and N_p [f] is the p-norm of f)

Applications of convexity: Hölder and Minkowski and Lp -spaces

We are building a theory of Lp -spaces. For that purpose we prove Hölder’s and Minkowski’s
inequalities, which are also generally applicable to probabilities:
Hölder
Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 (* Hoelder conjugates *) ->
'N_1 [f * g] <= 'N_p [f] * 'N_q [g].

Minkowski
Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g].

(Here \+ and * are pointwise addition and multiplication, and N_p [f] is the p-norm of f)

More useful lemmas: Markov, Chernoff, Chebyshev and Cantelli

Lemma markov (X : {RV P >-> R}) (f : R -> R) (eps : R) : (0 < eps) ->
measurable_fun [set: R] f -> (forall r, 0 <= r -> 0 <= f r) ->
{in Num.nneg &, {homo f : x y / x <= y}} ->

(f eps)%:E * P [set x | eps%:E <= `| (X x)%:E |] <=
'E_P[f \o (fun x => `| x |) \o X].

Lemma chernoff (X : {RV P >-> R}) (r a : R) : (0 < r) ->
P [set x | X x >= a] <= mmt_gen_fun X r * (expR (- (r * a)))%:E.

Lemma chebyshev (X : {RV P >-> R}) (eps : R) : (0 < eps) ->
P [set x | (eps <= `| X x - fine ('E_P[X])|)] <= (eps ^- 2)%:E * 'V_P[X].

Lemma cantelli (X : {RV P >-> R}) (lambda : R) :
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o (X ^+ 2)) ->
(0 < lambda) ->

P [set x | lambda%:E <= (X x)%:E - 'E_P[X]] <=
(fine 'V_P[X] / (fine 'V_P[X] + lambda^2))%:E.

Our experiment (WIP): Bernoulli sampling [Rajani, 2019]

Theorem
Given n independent 0-1 random variables Xi, p ∈ (0, 1], θ ∈ (0, p), δ ∈ (0, 1]
with Pr(Xi = 1) = p, X =

∑n
i=1Xi, and X̄ = X

n ,
then Pr(|X̄ − p| ≤ θ) ≥ 1− δ when n ≥ 3

θ2
ln(2δ).

becomes:

Theorem sampling (X : seq {RV P >-> R}) (theta delta p : R) :
let n := size X in let X' x := ((\sum_(Xi in X) Xi) x) / n%:R in
is_bernoulli_trial X n -> 0 < p <= 1 -> 0 < delta <= 1 ->
0 < theta < p -> 0 < n -> 3 / theta^+2 * ln(2 / delta) <= n%:R
-> P [set i | `| X' i - p | <= theta] >= 1 - delta%:E.

Conclusions

• We are generalizing Infotheo theories by porting them to MathComp-Analysis
(future work: conditional probabilities, information theory, etc.)

• We are working on the verification of probabilistic programs by equational reasoning
• We aim to have a rich and general library that can be reused
• We are looking for contributors!

Bibliography I
Reynald Affeldt and Cyril Cohen. Measure construction by extension in dependent type theory with application

to integration. J. Autom. Reason., 67(3):28, 2023. doi: 10.1007/s10817-023-09671-5. URL
https://doi.org/10.1007/s10817-023-09671-5.

Reynald Affeldt and Zachary Stone. A comprehensive overview of the lebesgue differentiation theorem in coq.
2024. To appear.

Reynald Affeldt, Manabu Hagiwara, and Jonas Sénizergues. Formalization of Shannon’s theorems. Journal of
Automated Reasoning, 53(1):63–103, 2014.

Reynald Affeldt, Cyril Cohen, and Damien Rouhling. Formalization techniques for asymptotic reasoning in
classical analysis. Journal of Formalized Reasoning, 11(1):43–76, 2018.

Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. A library for formalization of linear error-correcting
codes. J. Autom. Reason., 64(6):1123–1164, 2020a. doi: 10.1007/s10817-019-09538-8. URL
https://doi.org/10.1007/s10817-019-09538-8.

Reynald Affeldt, Jacques Garrigue, and Takafumi Saikawa. Formal adventures in convex and conical spaces. In
13th Conference on Intelligent Computer Mathematics (CICM 2020), Bertinoro, Forli, Italy, July 26–31, 2020,
volume 12236 of Lecture Notes in Artificial Intelligence, pages 23–38. Springer, Jul 2020b. doi:
10.1007/978-3-030-53518-6_2.

Reynald Affeldt, Alessandro Bruni, Clark Barrett, Ieva Daukantas, Harun Khan, Takafumi Saikawa, and Carsten
Schürmann. Robust mean estimation by all means. 2024a. To appear.

Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark. Taming
differentiable logics with coq formalisation. 2024b. To appear.

https://doi.org/10.1007/s10817-023-09671-5
https://link.springer.com/journal/10817
https://link.springer.com/journal/10817
https://jfr.unibo.it/
https://doi.org/10.1007/s10817-019-09538-8

Bibliography II
Ieva Daukantas, Alessandro Bruni, and Carsten Schürmann. Trimming data sets: a verified algorithm for robust

mean estimation. In 23rd International Symposium on Principles and Practice of Declarative Programming
(PPDP 2021), Tallinn, Estonia, September 6–8, 2021, pages 17:1–17:9. ACM, 2021. doi:
10.1145/3479394.3479412. URL https://doi.org/10.1145/3479394.3479412.

Filip Markovic, Pierre Roux, Sergey Bozhko, Alessandro V. Papadopoulos, and Björn B. Brandenburg. CTA: A
correlation-tolerant analysis of the deadline-failure probability of dependent tasks. In IEEE Real-Time Systems
Symposium (RTSS 2023), Taipei, Taiwan, December 5–8, 2023, pages 317–330. IEEE, 2023. doi:
10.1109/RTSS59052.2023.00035. URL https://doi.org/10.1109/RTSS59052.2023.00035.

Samir Rajani. Applications of chernoff bounds.
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf, 2019. The University of
Chicago Mathematics REU 2019.

Joseph Tassarotti. A probability theory library for the Coq theorem prover.
https://github.com/jtassarotti/coq-proba, 2023. Since 2020.

Joseph Tassarotti and Jean-Baptiste Tristan. Verified density compilation for a probabilistic programming
language. Proc. ACM Program. Lang., 7(PLDI):615–637, 2023. doi: 10.1145/3591245. URL
https://doi.org/10.1145/3591245.

The FormalML development team. FormalML: Formalization of machine learning theory with applications to
program synthesis. https://github.com/IBM/FormalML, 2023. Since 2019.

Koundinya Vajjha, Barry M. Trager, Avraham Shinnar, and Vasily Pestun. Formalization of a stochastic
approximation theorem. In ITP, 2022. doi: 10.4230/LIPICS.ITP.2022.31.

https://doi.org/10.1145/3479394.3479412
https://doi.org/10.1109/RTSS59052.2023.00035
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf
https://github.com/jtassarotti/coq-proba
https://doi.org/10.1145/3591245
https://github.com/IBM/FormalML

	References

