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An overview of existing formalizations of probabilities in Coq 1

InfoTheo (2009–ongoing)
• Formalizes finite probabilities; used for information theory [Affeldt et al., 2014],
error-correcting codes [Affeldt et al., 2020a], robust statistics [Affeldt et al., 2024a]

coq-proba [Tassarotti, 2023]
• Used to verify a compiler for probabilistic programming languages [Tassarotti and
Tristan, 2023]

FormalML [The FormalML development team, 2023]
• Contains advanced theorems in probability theory, e.g., a stochastic approximation
theorem [Vajjha et al., 2022]

1ISABELLE/HOL and MATHLIB have extensive libraries for probabilities, this talk focuses on Coq



A proof engineering effort



Applications of MathComp-Analysis to probabilities?

MathComp-Analysis timeline
• Asymptotic reasoning + Landau notations → differentiability [Affeldt et al., 2018]
• Lebesgue integral [Affeldt and Cohen, 2023]
• Fundamental theorem of calculus [Affeldt and Stone, 2024]
• Probability theory (2023–ongoing)

Applications to probabilities
• Verified probabilistic programming languages [CPP 2023, APLAS 2023]
• Verified worst-case failure probability of real-time systems [Markovic et al., 2023]

Other planned applications
• Verified robust statistics [Daukantas et al., 2021, Affeldt et al., 2024a]
• Verified machine learning [Affeldt et al., 2024b]



An example: Bernoulli sampling [Rajani, 2019]

Bernoulli sampling
Given n independent 0-1 random variables Xi, p ∈ (0, 1], θ ∈ (0, p), δ ∈ (0, 1]
with Pr(Xi = 1) = p, X =

∑n
i=1Xi, and X̄ = X

n ,
then Pr(|X̄ − p| ≤ θ) ≥ 1− δ when n ≥ 3

θ2
ln(2δ ).



Simple and general: inherit from measure theory with Hierarchy Builder

Definition (Measure)
A measure µ : P(T ) → R satisfies:
1. µ(∅) = 0 (measure-0)
2. 0 ≤ µ(A) for any set A (non-negativity)
3. µ(

∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) (σ-additivity)

Definition (Probability measure)
A probability measure additionally implements the following interface:
HB.factory Record Measure_isProbability d (T : measurableType d)

(R : realType) (P : set T -> \bar R) of isMeasure _ _ _ P :=
{ probability_setT : P setT = 1%E }.
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…and fun: random variables and expectations

Context d (T : measurableType d) (R : realType) (P : probability T R).

Definition (Random variables)
A random variable is neither random, nor a variable. It’s a measurable function from T to R.
Definition random_variable := {mfun T >-> R}.
Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

Definition (Expectation)
Expectation of X with the measure P can be expressed as the Lebesgue integral

∫
X dP :

Definition expectation (X : {RV P >-> R}) := \int[P]_w (X w)%:E.
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Recovering discreteness

Discrete (random) variables
Discrete random variables additionally implement the following interface:
HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Discrete sums
When X : {dRV P >-> R} (the type of discrete random variables),
we build a function ak to enumerate its values, and ck to enumerate the probabilities,
so that the distribution can be written as

∑
k ckδak :

Lemma distribution_dRV A : measurable A ->
distribution P X A = \sum_(k <oo) c X k * \d_(a X k) A.
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(More) formal adventures in convex spaces

[Affeldt et al., 2020b] shows that probability theory benefits from a
theory of convex spaces.
We are porting it to MathComp-Analysis to define convex functions:

Convex function
Definition convex_function (R : realType) (D : set R) (f : R -> R) :=

forall t : {i01 R}, {in D &, forall (x y : R), f (x <| t |> y) <= f x <| t |> f y}.

Exponentials are convex
Lemma convex_expR : convex_function setT expR.
Lemma convex_powR p : 1 <= p -> convex_function `[0, +oo[ (fun x : R => powR x p).

Moments: exponential expectations
Definition mmt_gen_fun (X : {RV P >-> R}) (t : R) := 'E_P[expR \o t \o* X].



Applications of convexity: Hölder and Minkowski and Lp -spaces

We are building a theory of Lp -spaces. For that purpose we prove Hölder’s and Minkowski’s
inequalities, which are also generally applicable to probabilities:
Hölder
Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 (* Hoelder conjugates *) ->
'N_1 [f \* g] <= 'N_p [f] * 'N_q [g].

Minkowski
Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g].

(Here \+ and \* are pointwise addition and multiplication, and N_p [f] is the p-norm of f)
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More useful lemmas: Markov, Chernoff, Chebyshev and Cantelli

Lemma markov (X : {RV P >-> R}) (f : R -> R) (eps : R) : (0 < eps) ->
measurable_fun [set: R] f -> (forall r, 0 <= r -> 0 <= f r) ->
{in Num.nneg &, {homo f : x y / x <= y}} ->

(f eps)%:E * P [set x | eps%:E <= `| (X x)%:E | ] <=
'E_P[f \o (fun x => `| x |) \o X].

Lemma chernoff (X : {RV P >-> R}) (r a : R) : (0 < r) ->
P [set x | X x >= a] <= mmt_gen_fun X r * (expR (- (r * a)))%:E.

Lemma chebyshev (X : {RV P >-> R}) (eps : R) : (0 < eps) ->
P [set x | (eps <= `| X x - fine ('E_P[X])|) ] <= (eps ^- 2)%:E * 'V_P[X].

Lemma cantelli (X : {RV P >-> R}) (lambda : R) :
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o (X ^+ 2)) ->
(0 < lambda) ->

P [set x | lambda%:E <= (X x)%:E - 'E_P[X]] <=
(fine 'V_P[X] / (fine 'V_P[X] + lambda^2))%:E.



Our experiment (WIP): Bernoulli sampling [Rajani, 2019]

Theorem
Given n independent 0-1 random variables Xi, p ∈ (0, 1], θ ∈ (0, p), δ ∈ (0, 1]
with Pr(Xi = 1) = p, X =

∑n
i=1Xi, and X̄ = X

n ,
then Pr(|X̄ − p| ≤ θ) ≥ 1− δ when n ≥ 3

θ2
ln(2δ ).

becomes:

Theorem sampling (X : seq {RV P >-> R}) (theta delta p : R) :
let n := size X in let X' x := ((\sum_(Xi in X) Xi) x) / n%:R in
is_bernoulli_trial X n -> 0 < p <= 1 -> 0 < delta <= 1 ->
0 < theta < p -> 0 < n -> 3 / theta^+2 * ln(2 / delta) <= n%:R
-> P [set i | `| X' i - p | <= theta] >= 1 - delta%:E.



Conclusions

• We are generalizing Infotheo theories by porting them to MathComp-Analysis
(future work: conditional probabilities, information theory, etc.)

• We are working on the verification of probabilistic programs by equational reasoning
• We aim to have a rich and general library that can be reused
• We are looking for contributors!
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