
Probability theory can be fun and simple with dependent types
(Yet another formal theory of probabilities in Coq)

Reynald Affeldt, Alessandro Bruni, Pierre Roux, Takafumi Saikawa

Workshop on Alignment of Proof Systems and Machine Learning
Vienna, Austria, March 25th-26th 2024

The Coq proof assistant

• Dependently typed programming language/proof checker
• Notable (historical) uses:

• CompCert, a verified C compiler [Leroy et al., 2016]
• Four Color Theorem [Gonthier, 2005]
• Odd Order Theorem [Gonthier et al., 2013]

• More recent (and relevant) uses:
• Verified perceptrons [Bagnall and Stewart, 2019]
• Probabilistic languages with applications to machine
learning [Tassarotti and Tristan, 2023]

An overview of existing formalizations in Coq

InfoTheo [Infotheo, 2018]
• Formalizes finite probabilities; used for information theory, error-correcting codes,
robust statistics

coq-proba [Tassarotti, 2023]
• Used to reason about programs

FormalML [The FormalML development team, 2023]
• Contains advanced theorems in probability theory

MathComp-Analysis [Affeldt et al., 2024a]
• Contains a rich formalization of measure theory and Lebesgue integrals to build upon

A proof engineering effort

Motivation

Recent developments in MathComp-Analysis
• Asymptotic reasoning + Landau notations → differentiability [Affeldt et al., 2020]
• Lebesgue integrals (2021-2023)
• Fundamental theorem of calculus (2023)
• Probability theory (2023)

Applications
• Verified probabilistic programming languages [Affeldt et al., 2023, Saito and Affeldt,
2023]

• Verified worst-case failure probability of real-time systems [Markovic et al., 2023]
• Future: verified robust statistics [Daukantas et al., 2021, Affeldt et al., 2024b]
• Future: verified machine learning [Affeldt et al., 2024c]

An example: Bernoulli sampling [Rajani, 2019]

Theorem (Bernoulli sampling)
Given independent 0-1 random variables Xi, with X =

∑n
i=1Xi,

Pr(Xi = 1) = p, and X̄ = X
n , if n ≥ 3

θ2
ln(2δ), then

Pr(|X̄ − p| ≤ θ) ≥ 1− δ.

An example: Bernoulli sampling [Rajani, 2019]

Theorem (Bernoulli sampling)
Given independent 0-1 random variables Xi, with X =

∑n
i=1Xi,

Pr(Xi = 1) = p, and X̄ = X
n , if n ≥ 3

θ2
ln(2δ), then

Pr(|X̄ − p| ≤ θ) ≥ 1− δ.

Simple and general: inherit from measure theory with Hierarchy Builder

Definition (Measure)
A measure µ : T → R satisfies:
1. µ(∅) = 0 (measure-0)
2. 0 ≤ µ(A) for any set A (non-negativity)
3. µ(

∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) (σ-additivity)

Definition (Probability measure)
A probability measure additionally implements the following interface:
HB.mixin Record isProbability d (T : measurableType d)

(R : realType) (P : set T -> \bar R) :=
{ probability_setT : P setT = 1 }.

Simple and general: inherit from measure theory with Hierarchy Builder

Definition (Measure)
A measure µ : T → R satisfies:
1. µ(∅) = 0 (measure-0)
2. 0 ≤ µ(A) for any set A (non-negativity)
3. µ(

∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) (σ-additivity)

Definition (Probability measure)
A probability measure additionally implements the following interface:
HB.mixin Record isProbability d (T : measurableType d)

(R : realType) (P : set T -> \bar R) :=
{ probability_setT : P setT = 1 }.

…and fun: random variables and expectations

Context d (T : measurableType d) (R : realType) (P : probability T R).

Definition (Random variables)
A random variable is neither random, nor a variable. It’s a measurable function from T to R.
Definition random_variable := {mfun T >-> R}.
Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

Definition (Expectation)
Expectation of X with the measure P can be expressed as the Lebesgue integral

∫
X dP :

Definition expectation (X : {RV P >-> R}) := \int[P]_w (X w)%:E.

…and fun: random variables and expectations

Context d (T : measurableType d) (R : realType) (P : probability T R).

Definition (Random variables)
A random variable is neither random, nor a variable. It’s a measurable function from T to R.
Definition random_variable := {mfun T >-> R}.
Notation "{ 'RV' P >-> R }" := (@random_variable _ _ R P).

Definition (Expectation)
Expectation of X with the measure P can be expressed as the Lebesgue integral

∫
X dP :

Definition expectation (X : {RV P >-> R}) := \int[P]_w (X w)%:E.

Recovering discreteness

Discrete (random) variables
Discrete random variables additionally implement the following interface:
HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Discrete sums
When X : {RV P >-> R} (the type of discrete random variables), we build a function
dRV_enum to enumerate its values ak, and a function enum_prob to enumerate the
probabilities pk, so that the distribution can be written as

∑
k ckδak , where δ is the Dirac

measure. In Coq this becomes:
Lemma distribution_dRV A : measurable A ->

distribution P X A = \sum_(k <oo) enum_prob X k * \d_(dRV_enum X k) A.

Recovering discreteness

Discrete (random) variables
Discrete random variables additionally implement the following interface:
HB.mixin Record MeasurableFun_isDiscrete d (T : measurableType d) (R : realType)

(X : T -> R) of @MeasurableFun d T R X := { countable_range : countable (range X) }.

Discrete sums
When X : {RV P >-> R} (the type of discrete random variables), we build a function
dRV_enum to enumerate its values ak, and a function enum_prob to enumerate the
probabilities pk, so that the distribution can be written as

∑
k ckδak , where δ is the Dirac

measure. In Coq this becomes:
Lemma distribution_dRV A : measurable A ->

distribution P X A = \sum_(k <oo) enum_prob X k * \d_(dRV_enum X k) A.

(More) formal adventures in convex spaces

[Infotheo, 2018] shows that probability theory benefits from a theory of
convex spaces:

Convex function
Definition convex_function (R : realType) (D : set R) (f : R -> R) :=

forall t : {i01 R}, {in D &, forall (x y : R), f (x <| t |> y) <= f x <| t |> f y}.

Exponentials are convex
Lemma convex_expR : convex_function setT expR.
Lemma convex_powR p : 1 <= p -> convex_function `[0, +oo[(fun x : R => powR x p).

Moments: exponential expectations
Definition mmt_gen_fun (X : {RV P >-> R}) (t : R) := 'E_P[expR \o t \o* X].

Applications of convexity: Hölder and Minkowski and Lp -spaces

We are building a theory of Lp -spaces. For that purpose we prove Hölder’s and Minkowski’s
inequalities, which are also generally applicable to probabilities:
Hölder
Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->
'N_1 [f * g] <= 'N_p [f] * 'N_q [g].

Minkowski
Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g].

(Here \+ and * are pointwise addition and multiplication, and N_p [f] is the p-norm of f)

Applications of convexity: Hölder and Minkowski and Lp -spaces

We are building a theory of Lp -spaces. For that purpose we prove Hölder’s and Minkowski’s
inequalities, which are also generally applicable to probabilities:
Hölder
Lemma hoelder (f g : T -> R) (p q : R) : measurable_fun setT f -> measurable_fun setT g ->

0 < p -> 0 < q -> p^-1 + q^-1 = 1 ->
'N_1 [f * g] <= 'N_p [f] * 'N_q [g].

Minkowski
Lemma minkowski f g p : measurable_fun setT f -> measurable_fun setT g -> 1 <= p ->

'N_p%:E[f \+ g] <= 'N_p%:E[f] + 'N_p%:E[g].

(Here \+ and * are pointwise addition and multiplication, and N_p [f] is the p-norm of f)

More useful lemmas: Markov, Chernoff, Chebyshev and Cantelli

Lemma markov (X : {RV P >-> R}) (f : R -> R) (eps : R) : (0 < eps) ->
measurable_fun [set: R] f -> (forall r, 0 <= r -> 0 <= f r) ->
{in Num.nneg &, {homo f : x y / x <= y}} ->

(f eps)%:E * P [set x | eps%:E <= `| (X x)%:E |] <=
'E_P[f \o (fun x => `| x |) \o X].

Lemma chernoff (X : {RV P >-> R}) (r a : R) : (0 < r) ->
P [set x | X x >= a] <= mmt_gen_fun X r * (expR (- (r * a)))%:E.

Lemma chebyshev (X : {RV P >-> R}) (eps : R) : (0 < eps) ->
P [set x | (eps <= `| X x - fine ('E_P[X])|)] <= (eps ^- 2)%:E * 'V_P[X].

Lemma cantelli (X : {RV P >-> R}) (lambda : R) :
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o (X ^+ 2)) ->
(0 < lambda) ->

P [set x | lambda%:E <= (X x)%:E - 'E_P[X]] <=
(fine 'V_P[X] / (fine 'V_P[X] + lambda^2))%:E.

Our experiment: Bernoulli sampling [Rajani, 2019]

Theorem
Given independent 0-1 random variables Xi, with X =

∑n
i=1Xi, Pr(Xi = 1) = p, and

X̄ = X
n , if n ≥ 3

θ2
ln(2δ), then Pr(|X̄ − p| ≤ θ) ≥ 1− δ.

becomes:

Theorem sampling (X_ : seq {RV P >-> R}) (theta delta p : R) :
let n := size X_ in let X' x := ((\sum_(Xi in X_) Xi) x) / n%:R in
is_bernoulli_trial X n -> 0 < p <= 1 -> 0 < delta <= 1 ->
0 < theta < p -> 0 < n -> 3 / theta^+2 * ln(2 / delta) <= n%:R
-> P [set i | `| X' i - p | <= theta] >= 1 - delta%:E.

Bibliography I

Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and Kazuhiko Sakaguchi.
Competing inheritance paths in dependent type theory: A case study in functional analysis. In Nicolas Peltier
and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th International Joint Conference, IJCAR
2020, Paris, France, July 1-4, 2020, Proceedings, Part II, volume 12167 of Lecture Notes in Computer Science,
pages 3–20. Springer, 2020. doi: 10.1007/978-3-030-51054-1_1. URL
https://doi.org/10.1007/978-3-030-51054-1_1.

Reynald Affeldt, Cyril Cohen, and Ayumu Saito. Semantics of probabilistic programs using s-finite kernels in
Coq. In 12th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2023), Boston,
MA, USA, January 16–17, 2023, pages 3–16. ACM, 2023. doi: 10.1145/3573105.3575691. URL
https://doi.org/10.1145/3573105.3575691.

Reynald Affeldt, Yves Bertot, Alessandro Bruni, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien
Rouhling, Pierre Roux, Kazuhiko Sakaguchi, Zachary Stone, Pierre-Yves Strub, and Laurent Théry.
MathComp-Analysis: Mathematical components compliant analysis library.
https://github.com/math-comp/analysis, 2024a. Since 2017. Version 1.0.0.

Reynald Affeldt, Alessandro Bruni, Clark Barrett, Ieva Daukantas, Harun Khan, Takafumi Saikawa, and Carsten
Schürmann. Robust mean estimation by all means. 2024b. Under submission.

Reynald Affeldt, Alessandro Bruni, Ekaterina Komendantskaya, Natalia Ślusarz, and Kathrin Stark. Taming
differentiable logics with coq formalisation. 2024c. Under submission.

https://doi.org/10.1007/978-3-030-51054-1_1
https://doi.org/10.1145/3573105.3575691
https://github.com/math-comp/analysis

Bibliography II

Alexander Bagnall and Gordon Stewart. Certifying the true error: Machine learning in coq with verified
generalization guarantees. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019, pages 2662–2669. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.33012662. URL
https://doi.org/10.1609/aaai.v33i01.33012662.

Ieva Daukantas, Alessandro Bruni, and Carsten Schürmann. Trimming data sets: a verified algorithm for robust
mean estimation. In 23rd International Symposium on Principles and Practice of Declarative Programming
(PPDP 2021), Tallinn, Estonia, September 6–8, 2021, pages 17:1–17:9. ACM, 2021. doi:
10.1145/3479394.3479412. URL https://doi.org/10.1145/3479394.3479412.

Georges Gonthier. A computer-checked proof of the Four Color Theorem. Technical report, Inria, March 2005.
URL https://inria.hal.science/hal-04034866.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot, Stéphane Le
Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev,
Enrico Tassi, and Laurent Théry. A machine-checked proof of the odd order theorem. In 4th International
Conference on Interactive Theorem Proving (ITP 2013), Rennes, France, July 22–26, 2013, volume 7998 of
Lecture Notes in Computer Science, pages 163–179. Springer, 2013. doi: 10.1007/978-3-642-39634-2_14.
URL https://doi.org/10.1007/978-3-642-39634-2_14.

https://doi.org/10.1609/aaai.v33i01.33012662
https://doi.org/10.1145/3479394.3479412
https://inria.hal.science/hal-04034866
https://doi.org/10.1007/978-3-642-39634-2_14

Bibliography III

Infotheo. Infotheo: A Coq formalization of information theory and linear error-correcting codes.
https://github.com/affeldt-aist/infotheo, 2018. Authors: Reynald Affeldt, Manabu Hagiwara,
Jonas Sénizergues, Jacques Garrigue, Kazuhiko Sakaguchi, Taku Asai, Takafumi Saikawa, and Naruomi
Obata. Last stable release: 0.6.1 (2023).

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand.
CompCert - A Formally Verified Optimizing Compiler. In ERTS 2016: Embedded Real Time Software and
Systems, 8th European Congress, Toulouse, France, January 2016. SEE. URL
https://inria.hal.science/hal-01238879.

Filip Markovic, Pierre Roux, Sergey Bozhko, Alessandro V. Papadopoulos, and Björn B. Brandenburg. CTA: A
correlation-tolerant analysis of the deadline-failure probability of dependent tasks. In IEEE Real-Time Systems
Symposium, RTSS 2023, Taipei, Taiwan, December 5-8, 2023, pages 317–330. IEEE, 2023. doi:
10.1109/RTSS59052.2023.00035. URL https://doi.org/10.1109/RTSS59052.2023.00035.

Samir Rajani. Applications of chernoff bounds.
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf, 2019. The University of
Chicago Mathematics REU 2019.

Ayumu Saito and Reynald Affeldt. Experimenting with an intrinsically-typed probabilistic programming language
in coq. In 21st Asian Symposium on Programming Languages and Systems (APLAS 2023), Taipei, Taiwan,
November 26–29, 2023, volume 14405 of Lecture Notes in Computer Science, pages 182–202. Springer, 2023.
doi: 10.1007/978-981-99-8311-7_9. URL https://doi.org/10.1007/978-981-99-8311-7_9.

https://github.com/affeldt-aist/infotheo
https://inria.hal.science/hal-01238879
https://doi.org/10.1109/RTSS59052.2023.00035
http://math.uchicago.edu/~may/REU2019/REUPapers/Rajani.pdf
https://doi.org/10.1007/978-981-99-8311-7_9

Bibliography IV

Joseph Tassarotti. A probability theory library for the Coq theorem prover.
https://github.com/jtassarotti/coq-proba, 2023. Since 2020.

Joseph Tassarotti and Jean-Baptiste Tristan. Verified density compilation for a probabilistic programming
language. Proc. ACM Program. Lang., 7(PLDI):615–637, 2023. doi: 10.1145/3591245. URL
https://doi.org/10.1145/3591245.

The FormalML development team. FormalML: Formalization of machine learning theory with applications to
program synthesis. https://github.com/IBM/FormalML, 2023. Since 2019.

https://github.com/jtassarotti/coq-proba
https://doi.org/10.1145/3591245
https://github.com/IBM/FormalML

	References

